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Pade� approximants are a natural generalization of Taylor polynomials; however
instead of polynomials now rational functions are used for the development of a
given function. In this article the convergence in capacity of Pade� approximants
[m�n] with m+n � �, m�n � 1, is investigated. Two types of assumptions are con-
sidered: In the first case the function f to be approximated has to have all its
singularities in a compact set E�C of capacity zero (the function may be multi-
&valued in C� "E). In the second case the function f has to be analytic in a domain
possessing a certain symmetry property (this notion is defined and discussed
below). It is shown that close-to-diagonal sequences of Pade� approximants [m�n]
converge to f in capacity in a domain D that can be determined in various ways.
In the case of the first type of assumptions the domain D is determined by the mini-
mality of the capacity of the complement of D, in the second case the domain D
is determined by a symmetry property. The rate of convergence is determined, and
it is shown that this rate is best possible for convergence in capacity. In addition
to the convergence results the asymptotic distribution of zeros and poles of the
approximants is studied. � 1997 Academic Press

1. MAIN RESULTS

Functions

f (z)= f0+
f1

z
+

f2

z2 + } } } (1.1)

analytic in a neighborhood of infinity will be approximated by Pade�
approximants. In a first group of results rather strong assumptions are
made about the singularities of the function f to be approximated
(Assumption 1.1). In a second group (Definition 1.3 and Theorem 1.7) a
different type of assumption is used, which turns out to be more general.
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Assumption 1.1. The function f is assumed to be analytic at infinity and
to have all its singularities in a compact set E�C� with cap(E )=0, i.e. f has
analytical continuations along any path in C� "E starting at infinity; the con-
tinuation may be multiple-valued.

By cap( } ) we denote the (logarithmic) capacity of a bounded (mea-
surable) set in C (for a definition see [28, Apprendix I] or any other book
on potential theory). The notion of capacity zero can be extended to sub-
sets of the whole Riemann sphere C� by Mo� bius transforms, while positive
capacity is defined only for sets bounded in C.

Definition 1.1. The Pade� approximant [m�n] of degree m, n # N to the
function f developed at infinity is defined as the rational function

[m�n](z)=
pmn(1�z)
qmn(1�z)

, (1.2)

where the pair of Pade� polynomials ( pmn , qmn), pmn # Pm , qmn # Pn , qmn�0,
has to satisfy

qmn \1
z+ f (z)& pmn \1

z+=O(z&m&n&1) as z � �. (1.3)

By O( } ) we denote Landau's big ``oh'' and by Pn the set of all complex
polynomials of degree not greater than n. The Pade� approximant [m�n] is
uniquely determined by (1.3). This, however, is not the case for the Pade�
polynomials pmn and qmn . They can always be multiplied by a non-zero
constant, but there may exist more essential non-uniqueness (cf. [17,
Chap. V] or [1, Chap. I]). In what is called the normal case, the Pade�
approximants [m�n] have a contact with f at infinity of order m+n+1. In
general, this contact can be larger and also smaller than m+n+1. The
Pade� approximants (1.2) can be considered as the rational analogue of
Taylor polynomials to a function f developed at infinity.

Since any continuum is of positive capacity, in Assumption 1.1 the set E
cannot contain any continuum. Therefore if the function f has branch
points, then different branch points must lie on different components of E.
Hence, the analytic continuation of f is necessarily multivalued in C"E if
f has branch points.

As the point of departure for the discussion of the main results we take
the
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Nuttall�Pommerenke Theorem [13, 18]. Let f satisfy Assumption
1.1 and assume that f is single-valued in C"E. Then for any =>0, 0<*<1,
and every compact set V�C"E, we have

lim
m, n � �

cap[z # V | |( f&[m�n])(z)|>=m+n]=0, (1.4)

where the sequence (m, n) # N2 is supposed to satisfy

*n�m�
n
*

as m, n � �. (1.5)

Motivated by the Nuttall�Pommerenke Theorem, convergence in
capacity is defined in analogy to convergence in measure in the following
way:

Definition 1.2. A sequence of functions fn , n=1, 2, ..., is said to con-
verge in capacity to f in the domain D�C� if for every =>0 and every com-
pact set V�D & C we have cap[z # V | |( f & fn)(z)|>=] � 0 as n � �.

It follows from Definition 1.2 that (1.4) implies that [m�n] converges to
f in capacity in the domain C� "E. Moreover, (1.4) shows that in the
Nuttall�Pommerenke Theorem convergence in capacity is faster than
geometric.

The Nuttall�Pommerenke Theorem as it is stated here has been proved
in [18], and it is an improvement of an earlier result by J. Nuttall [13].
It has further been extended to the class R0 of fast approximable functions
in [3]. In some respect this class R0 has already been studied by Walsh (cf.
[29, Chap. VIII]). Among other results it has been shown in [3] that fast
approximable functions are necessarily single-valued. These results are in
some sense the inverse of the Nuttall�Pommerenke Theorem, where single-
valuedness of f in C� "E has been assumed and fast rational approximability
follows as a conclusion. Convergence results related to the class R0 are now
rather well understood.

The main interest in the present paper is the convergence of Pade�
approximants to functions f with branch points. If Assumption 1.1 holds
and if the function f has branch points, then, as we have seen, f cannot be
single-valued in C� "E. But Pade� approximants are single-valued functions,
and therefore it is not possible to have convergence throughout the whole
domain C� "E, not even in capacity; the convergence behavior must be dif-
ferent from that observed in the Nuttall�Pommerenke Theorem. In the
light of Gonchar's result in [3], it is clear that a convergence speed faster
than geometric also is not possible.
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In the first group of results we only consider functions f that satisfy
Assumption 1.1. This is a rather large class; it contains, for instance, all
algebraic functions analytic at infinity. In case of an algebraic function f the
set E is finite, and therefore of capacity zero. On the other hand a function
like

f (z)= :
�

j=1

z&2 j
, |z|>1,

does not satisfy Assumption 1.1 since because of the gaps in the power
series the unit circle �D is the natural boundary for analytic continuations
of f, and cap(�D)=1>0.

Theorem 1.1. Let f satisfy Assumption 1.1. Then there exists a domain
D=Df�C� , � # D, which is unique up to a set of capacity zero, and

(i) the sequence [[mj�nj]]j # N of Pade� approximants converges in
capacity to f in the domain D for any sequence [(mj , nj)]j # N of indices
satisfying

mj+nj � �,
mj

nj
� 1 as j � �. (1.6)

(ii) If D� is a domain with D� $D and cap(D� "D)>0, then no sequence
of Pade� approximants [[mj �nj]]j # N satisfying (1.6) converges in capacity to
f in the whole domain D� .

Remarks. (1) Despite the assumption that f is analytic at infinity, it is
not excluded that � # E. However, if f is single-valued in C"E, then we
always have � � E.

(2) If the function f is single-valued in C� "E, then Theorem 1.1 is a
special case of the Nuttall�Pommerenke Theorem, and Df=C� "E. Note
that in the Nuttall�Pommerenke Theorem a much larger class of sequences
is admissible than in Theorem 1.1. While (1.5) allows all sectorial sequen-
ces, by (1.6) only close-to-diagonal sequences are admissible. Essentially
non-diagonal sequences will not be considered in the present paper.

(3) In Theorem 1.1 the convergence domain D=Df is determined
only up to a set of capacity zero. Note that if B1 and B2 are two Borel sets,
one of which is of capacity zero, then cap(B1 _ B2)=cap(B1)+cap(B2) (cf.
[12, Chap. V, Sect. 4]). Any denomberable set is of capacity zero, while,
for instance, any continuum that is not reduced to a single point, and
therefore also every piece of a line, is of positive capacity.
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(4) Linear and planar Lebesgue measure dominate capacity. For
instance, for any closed domain V�C we have

cap(V )�
1
?

Area(V) (1.7)

(cf. [8, Chap. II, Sect. 4]). Therefore, convergence in capacity implies con-
vergence in planar Lebesgue measure.

If the function f has branch points, then the set C� "D contains at least
one continuum that is not reduced to a single point, which implies that
cap(�D)>0. As a consequence we know that in this case the Green func-
tion gD(z, w) exists in D=Df in a proper sense. (For a definition of the
Green function cf. [28, Appendix V]). In order to avoid exceptional cases
in the following, we extend the definition of the Green function, and define
gD( } , w) :#� for all w # D if cap(�D)=0. The function GD is then defined
as

G(z)=GD(z) :=exp[&gD(z, �)]. (1.8)

The function satisfies 0�G(z)<1 for all z # D, and we have G(z)>0 for
z # D"[�] if cap(�D)>0. Note that � is always contained in the con-
vergence domain D. We have GD(z)=1 for quasi every z # �D (cf. [28,
Appendix V]). A property is said to hold quasi everywhere (for short, qu.e.)
on a set S�C� if it holds for every z # S with possible exceptions on a set
of (outer) capacity zero.

There is a simple representation of the function (1.8) if the domain D�C�
is simply connected: Let . : D � [ |w|<1] be a Riemann mapping function
with .(�)=0, then GD=|.|. If the function f has no branch points, then
Df=C� and consequently GDf (z)=0 for all z # C� . Because of the extended
definition of the Green function the function GD is defined for any domain
D�C� with � # D. Since gD(z, w)= gD� (z, w) for all z, w # D & D� if
cap(D"D� )=cap(D� "D)=0, the function GD does not change if the two
domains D and D� differ only by a set of capacity zero.

The next theorem is a quantitative strengthening of Theorem 1.1. The
rate of convergence is given together with a statement in part (ii), which
shows that this rate is best possible for convergence in capacity.

Theorem 1.2. Let f satisfy Assumption 1.1, let D=Df be the convergence
domain from Theorem 1.1, G=GD the function (1.8), and [[mj�nj]]�

j=1 a
close-to-diagonal sequence of Pade� approximants, i.e., the sequence of indices
[(mj �nj)] satisfies (1.6). Then
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(i) for every =>0 and every compact sets V�D"[�] we have

lim
j � �

cap[z # V | |( f&[mj�nj])(z)|>(G(z)+=)mj+nj]=0, (1.9)

(ii) and if the function f has branch points, i.e. if G�0, then for every
compact set V�D"[�] and every 0<=�infz # V G(z) we have

lim
j � �

cap[z # V | |( f&[mj�nj])(z)| <( G(z)&=)mj+nj]=0. (1.10)

Remarks. (1) Since G(z)<1 for all z # D, limit (1.9) implies that the
sequence [[mj �nj]] converges in capacity to f in the domain D=Df . If the
function f has branch points, then 0<G(z) for all z # D "[�], and the two
limits (1.9) and (1.10) together show that the sequence [[mj�nj]] con-
verges with a geometric speed, only that there may exist exceptional sets of
asymptotically vanishing capacity. The degree of convergence is given by
the function GD(z) for every z # Df .

(2) It follows from Theorems 1.3 and 1.4, below, that if the function
f has no branch points, i.e. if f is single-valued in C� "E, then we have
D=Df=C� . We further have GD(z)=0 for all z # D=C� , and therefore in
this case limit (1.9) is identical with limit (1.4) in the Nuttall�Pommerenke
Theorem. However, the Nuttall�Pommerenke Theorem has been proved
for sectorial sequences [[mj�nj]], while Theorem 1.2 can be proved only
for close-to-diagonal sequences. A convergence in capacity faster than
geometric is typical for the Nuttall�Pommerenke Theorem. A more
detailed investigation of the convergence speed under the assumptions of
this theorem can be found in [Ka].

(3) In Theorem 1.1 and 1.2 nothing is said about the convergence in
capacity for essentially non-diagonal sequences of Pade� approximants. It
seems to be possible to prove results that are in some way analogous to
those in Theorems 1.1 and 1.2 also for functions f with branch points, but
then the convergence domain will be different from Df . The new domain
will depend on the parameter * in (1.5), and (1.5) has to be made more
precise. There will be a domain of divergence that contains a neighborhood
of the origin. Note that it follows from Theorem 1.5, below, that in the case
of close-to-diagonal sequences we have Df=C� , and therefore a non-empty
domain of divergence does not exist in the case of Assumption 1.1.

(4) One may ask whether the assumption cap(E)=0 is necessary. In
[9] and [19] it has been shown by counterexamples that if a function f or
its analytic continuation has a set of singularities E� �C of positive
capacity, then for the diagonal sequence of Pade� approximants [n�n],
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n=1, 2, ..., convergence in capacity may not hold on any subdomain of
C� "E� .

(5) Despite the counterexamples given in [9] and [19] it will be
shown in Theorem 1.7, below, that the results of Theorems 1.1 and 1.2 can
be generalized to a larger class of functions f than those satisfying Assump-
tion 1.1. However, then the domain D of definition of the function f has to
be specified first; it has to possess special properties (the symmetry
property), and the boundary values of f have to satisfy certain conditions.

(6) Another question is whether the type of convergence proved in
Theorems 1.1 and 1.2 can be strengthend. This may be possible, but locally
uniform convergence in D is in general not true. Let for instance the func-
tion f be defined by

f (z)=|
1

&1

(t&cos(:1 ?))(t&cos(:2 ?))

? - 1&t2(t&z)
dt, (1.11)

where the three numbers 1, :1 , :2 (0<:1<:2<1) are assumed to be
rationally independent. Then the function f has analytic continuations
throughout C� "[&1, 1]. Thus, E=[&1, 1], and Assumption 1.1 is
satisfied. In [20] it has been shown that the set of all poles of the diagonal
Pade� approximants [n�n], n=1, 2, ..., are dense in C� . Therefore, locally
uniform convergence is impossible everywhere in C� . On the other hand, it
follows rather immediately from Theorem 1.3 or 1.4, below, that Df=C�
"[&1, 1], and hence the sequence [[n�n]] converges in capacity to f in
C� "[&1, 1].

(7) In [11] it has been shown that if a sequence [ fn]�
n=1 converges

in capacity to f in a domain D�C� , then there always exists an infinite sub-
sequence [ fn]n # N , N�N, which converges to f qu.e. in D. The situation
is analogous to that of convergence in measure and convergence almost
everywhere, where also the first convergence implies the second one for
subsequences.

(8) For many purposes convergence in capacity is not good enough.
However, there exists a pole-elimination procedure that allows one to
derive rational functions from given Pade� approximants [mj �nj], and the
new sequence of rational functions converges uniformly on given compact
sets in Df . The pole elimination can be done in such a way that the speed
of convergence in the uniform norm is almost the same as that in capacity.

The next three theorems are concerned with the structure of the con-
vergence domains. The geometric aspects of these results have been studied
in [21�23]; they will be repeated here for the convenience of the reader.
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Theorem 1.3 ([21; 22, Theorems 1 and 2]. Let the function f be
analytic at infinity. Then there uniquely exists a domain D�C� satisfying the
following three conditions:

(i) � # D and the function f has a single-valued analytic continuation
in D.

(ii) cap(�D)=infD� cap(�D� ), where the infimum extends over all
domains D� �C� satisfying assertion (i).

(iii) D=� D� , where the union extends over all domains D� �C� satisfy-
ing the assertions (i) and (ii).

Remark. The uniquely existing domain D in Theorem 1.3 is called the
extremal domain for single-valued analytic continuation of the function f. Of
the three conditions in Theorem 1.3 the third one is of minor importance;
without it the domain D is determined only up to a set of capacity zero.

Theorem 1.4. If the function f satisfies Assumption 1.1, then the con-
vergence domain Df of Theorem 1.1 is identical with the extremal domain D
of Theorem 1.3 up to a set of capacity zero.

Remarks. (1) It has already been mentioned earlier that because of
the single-valuedness of the approximants [mj �nj] the function f has also
to be single-valued in the convergence domain Df . Therefore it is not sur-
prising that condition (i) in Theorem 1.3 plays a role in the characteriza-
tion of Df .

(2) From the definition of the Green function (cf. [28, Appendix
V]), Robin's constant r=&log cap(�Df), and the function GD(z) in (1.8)
it follows that

GD (z)=
cap(�D)

|z|
+O(z&2) as z � �. (1.12)

Thus, condition (ii) in Theorem 1.3 means that the domain D is chosen in
such a way that the convergence factor GD is as small as possible near
infinity. This property corresponds with the intuitive understanding of
Pade� approximants. These approximants try to have a contact as good as
possible to the function f near infinity (the point of development) for given
degrees.

Theorems 1.1, 1.2, and 1.4 will be proved together with Theorems 1.7,
1.8, and 1.9 in the last section of the paper. The presentation of results will
be continued by two theorems about the structure of the extremal domains
D. The knowledge of the structure is the basis for the second group of con-
vergence results.
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Theorem 1.5 (Structure Theorem [23, Theorem 1]). Let f satisfy
Assumption 1.1, and let D=Df be the extremal domain from Theorem 1.3.
Then the complement F :=C� "D has empty interior and it has the structure

F=F0 _ .
j # I

Jj , (1.13)

where F0 �C is a compact set with cap(F0)=0, F0"E consists of isolated
points, and the Jj , j # I, are open analytic arcs. The family [Jj] j # I{< if and
only if the function f has branch points.

Remarks. (1) If the function f is single-valued in C� "E, then I=< and
F0=E.

(2) If the function f is not single-valued in C� "E, then because of
cap(F0)=0 and cap(Jj)>0 for all j # I{<, the dominant part of F is the
piece-wise analytic arcs Jj .

In the first part of the next theorem a symmetry property of the Green
function gD(z, �) will be formulated. This property will turn out to be
fundamental for the proofs of all results in the present paper.

Theorem 1.6 (Symmetry Property [23, Theorem 1 and Corollary]).
Let the function f, the domain D=Df , and its complement F be the same as
in Theorem 1.5, and assume that the function f has branch points.

(a) The Green function gD(z, �) possesses the symmetry property

�
�n+

gD (z, �)=
�

�n&

gD (z, �) for all z # Jj , j # I, (1.14)

where ���n+ and ���n& denote the normal derivatives from both sides of the
arcs Jj .

(b) Let h*D (z, �) be the conjugate harmonic function to gD(z, �)
(which is not single&valued ) and define

Q(z) :=[( gD(z, �)+ih*D (z, �))$]2 for z # C� "F0, (1.15)

then Q is analytic in C� "F0 and has a zero of order 2 at infinity. Let h*D (z, �)
be normalized in such a way that Q(z)�z2 | z=�>0. Then the arcs Jj , j # I,
are trajectories the quadratic differential Q(z) dz2, more precisely

Q(:j (t)) :j$(t)2�0 for t # [0, 1], j # I, (1.16)

where :j : [0, 1] � C is a smooth representation of the arc Jj .
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Remarks. (1) Since the arcs Jj , j # I, are analytic, the Green function
gD(z, �) can be continued harmonically across each arc Jj from both sides
by reflection. Especially, it follows that the normal derivatives ���n+ and
���n& of gD(z, �) from both sides of Jj exist for all z # Jj , j # I.

(2) The proof of part (b) of Theorem 1.6 follows from Theorem 1 in
[24]. Part (a) of Theorem 1.6 follows from (1.5) in the corollary to
Theorem 6 in [24].

(3) If the function f has branch points, then I=% < and cap(�D)>0. It
is immediate that all points z # Jj , j # I, are regular with respect to the solu-
tion of Dirichlet problems in D. If there exist irregular points, then they
have to belong to F0 . As a consequence we have gD(z, �)=0 for all z # Jj ,
j # I, and because of (1.8) GD(z)=1 for all z # Jj , j # I. Since gD(z, �) can
be harmonically continued across the arcs Jj , j # I, it follows from the chain
rule that the symmetry property (1.14) is equivalent to

�
�n+

GD (z)=
�

�n&

GD (z) for all z # Jj , j # I, (1.17)

whereas in (1.14) ���n+ and ���n& denote the normal derivatives from
both sides of Jj .

(4) If the function f has no branch points, then I=<, and therefore
the assertions (1.14) and (1.15) are empty. Thus, in a formal sense,
Theorem 1.6 holds also if f has no branch points.

(5) By a variational argument it can be shown that the symmetry
property (1.14) (or (1.17)) is equivalent to the minimality of cap(�D), i.e.
it is equivalent to condition (ii) in Theorem 1.3.

(6) The quadratic differential (1.16) is especially simple if f is an
algebraic function since then E is finite and the function Q defined in (1.15)
is rational.

Before we come to the second group of convergence results, we consider
two functions f1 and f2 and their associated domains of convergence as
examples. In order to have simple descriptions for the analytic arcs that
constitute the complement of the convergence domains Df1

and Df2
, func-

tions are chosen with many symmetries.

Example 1.1. Let f1 be defined by

f1(z) :=�1&
2
z2+

9
z4 . (1.18)
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The function has the 4 branch points z1, ..., 4=\exp(\i?�6), and
E=[z1 , ..., z4 , 0]. Let D1=Df1

denote the extremal domain for analytic
continuation of f1 . Then D1 :=C� "(C11 _ C12 _ [0]) is essentially doubly
connected, and the two components C11 and C12 are trajectories of a quad-
ratic differential. We then have

z2

z4&2z2+9
dz2�0, (1.19)

where dz is the line element on C11 and C12 . The arc C11 connects z1=ei?�6

with z4=e&i?�6 and C12 connects z2=&ei?�6 with z3=&e&i?�6. The func-
tion GD is given by

GD (z)=exp _&Re |
z

z1

` d`

- 9&2`2+`4& , (1.20)

where the integral is taken along a path in C� "(C11 _ C12 _ [0]). The tra-
jectories C11 and C12 are shown in Fig. 1 together with the poles of the
Pade� approximant [40, 40] to the function f1 .

It is a consequence of Theorems 1.1, 1.2, and 1.4 that the diagonal Pade�
approximants [n�n], n=1, 2, ..., converge in capacity to f1 in the domain
D1=C� "(C11 _ C12 _ [0]). In the special case of the function f1 more can
be said about the convergence of [[n�n]] to f1 . It follows from the analysis
contained in [2] and the symmetries of the function f1 that we have locally
uniform convergence in the domain C� "(C11 _ C12 _ [0]). This, however, is

Fig. 1. Set of minimal capacity associated with function f1 and the poles of the Pade�
approximant [40�40].
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a result which can only be proved by using special properties of elliptic
functions.

Example 1.2. Let f2 be defined by

f2(z) :=
4�1&

2
z2+

9
z4 . (1.21)

Like f1 , f2 also has the four branch points z1, ..., 4=\exp(\i?�6), and
again E=[z1 , ..., z4 , 0]. However, the extremal domain D2 for analytic
continuation of f2 has now to be simply connected (except for the pole at
the origin). Therefore the complement of D2 is a continuum that connects
all four branch points z1 , ..., z4 . Finding a continuum of minimal capacity
that connects a given finite set of points in C is known in geometric func-
tion theory as Lavrentiev's problem (cf. [5, Chap. IV]). In Fig. 2 the con-
tinuum is shown, it consists of five arcs, which are all trajectories of the
same rational quadratic differential and satisfy

z2&x2

z4&2z2+9
dz2�0, (1.22)

where x # (0, 1) is a fixed point. At x and &x the continuum bifurcates.
Assumption 1.1 is satisfied by f2 . Hence, we know that the diagonal Pade�
approximants [n�n], n=1, 2, ... converge in capacity to f2 in the domain
D2 .

Fig. 2. Set of minimal capacity associated with function f2 and the poles of the Pade�
approximant [40�40].
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The function f2 is algebraic. In [15] it has been conjectured that there-
fore only a bounded number of poles of each [n�n] can cluster in D2 . In
Fig. 2 we have plotted the poles of [40�40] together with the trajectories
forming �D2 . An inspection of the Pade� approximants [n�n] for other
values of n # N backs Nuttall's conjecture.

Next follows the second group of convergence results. For these results
it is typical that the domain, in which the function f will be approximated,
is specified first, and only after this are the properties of the function f
specified.

Definition 1.3. A domain D�C� is said to be symmetric (or to possess
the symmetry property):

(i) if � # D and the complement F :=C� "D is of form (1.13), i.e.,

F=F0 _ .
j # I

Jj , (1.24)

where F0�C is a compact set with cap(F0)=0, the Jj , j # I, are open
analytic arcs, and �j # I Jj{<,

(ii) further, if the Green function gD(z, �) possesses the symmetry
property (1.14).

Remark. In Theorems 1.4 through 1.6 it has been shown that if the
function f satisfies Assumption 1.1 and if f has branch points, then the con-
vergence domain Df is symmetric.

The next theorem is the main convergence result in the second group
and together with Theorem 1.2 it represents the main results of the present
paper.

Theorem 1.7. Let D�C� be a symmetric domain and assume that

(i) f is a function analytic and single-valued in D,

(ii) there exists a compact set F1�F with cap(F1)=0 such that f has
a continuous extension to every z # �D"F1 , and

(iii) the jump functions gj , j # I, which are defined for every z # Jj"F1

by

gj (z) := f+(z)& f&(z), z # Jj , j # I, (1.25)

are assumed to be continuous and different from zero on Jj "F1 , j # I.

Then any sequence [[mj�nj]] of Pade� approximants satisfying (1.6) con-
verges in capacity to f in D. Moreover, the limits (1.9) and (1.10) hold true.
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In (1.25) the boundary values of f from both sides of the arc Jj , j # I, are
denoted by f+ and f&.

Remarks. (1) We have seen in Theorems 1.3 through 1.6 that if the
function f satisfies Assumption 1.1 and has branch points, then the con-
vergence domain Df is symmetric, and it follows from the analyticity of f
in C� "E demanded in Assumption 1.1 that the jump functions gj , j # I,
defined by (1.25) are analytic on Jj and are not identical to zero. (The last
conclusion is a consequence of the minimality of cap(�D).) Thus, any
function f satisfying Assumption 1.1 and having branch points fulfills also
the three assumptions of Theorem 1.7.

(2) It is immediate that Theorem 1.7 covers a much larger class of
functions f than do Theorems 1.1 and 1.2. Moreover, Theorem 1.7 in com-
bination with Theorems 1.3 through 1.6 shows that the symmetric domain
of Definition 1.3 can be considered to be characteristic for covergence
domains of close-to-diagonal Pade� approximants.

(3) The assumptions made in condition (iii) of Theorem 1.7 can cer-
tainly be weakened, but some type of condition is necessary; this follows
from a class of functions studied in [24]. There it has been proved that
there exist complex-valued measures + on [&1, 1] such that diagonal Pade�
approximants [n�n], n=1, 2, ..., to the function

f (z)=|
d+(t)
t&z

(1.26)

do not converge in capacity in any subdomain of C� " [&1, 1]. The domain
C� "[&1, 1] possesses the symmetry property.

(4) Any domain of the form C� "(I1 _ } } } _ Im), where I1 , ..., Im are
compact real intervals possesses the symmetry property. It follows from
Markov's Theorem (cf. [28, Chap. 6.1]) that if the functions gj , j=1, ..., m,
in (1.25) are purely imaginary and of identical sign on all intervals
I1 , ..., Im , close-to-diagonal sequences of Pade� approximants [[m�n]] con-
verge not only in capacity, but also converge locally uniformly in
C� "Co(I1 _ } } } _ Im), where Co(I1 } } } Im) is the convex hull of I1 } } } Im . A
result proved in [10] shows that Markov's Theorem (i.e. locally uniform
convergence of diagonal Pade� approximants to functions of type (1.26)
with a positive measure +) holds also in case of functions (1.26) with a
complex-valued measure + on [&1, 1] if the measure + has a continuous
argument and satisfies some other conditions.

(5) If the domain D�C� is of the form C� "E with E�C compact and
cap(E)=0, then D is not a symmetric domain in the literal sense of Defini-
tion 1.3. However, if f is analytic and single-valued in C� "E, then the
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conclusion of Theorem 1.7 follows as a special case from the Nuttall�
Pommerenke Theorem.

The last results of the present chapter are concerned with the asymptotic
distribution of poles and zeros of Pade� approximants [mj �nj] and some
related questions. It is clear that the asymptotic distribution of poles and
zeros is decisive for the convergence of the Pade� approximants.

Let P([mj �nj]) and Z([mj�nj]) denote the sets of poles and zeros,
respectively, of [mj �nj], taking account of multiplicities, i.e., P([mj�nj])
and Z([mj�nj]) are in general multisets. Further, let ?mj nj

and `mj nj
denote

the measures that have a mass at each pole and zero equal to its order, i.e.,

?mj nj
:= :

t # P([mj�nj])

$t , `mj nj
:= :

t # Z([mj �nj])

$t . (1.27)

The equilibrium distribution on the compact set F is denoted by |=|F .
(For a definition see [28, Appendix IV].) A sequence of measures +n ,
n # N, is said to converge weakly to a measure +, written +n *� +, if for any
function h continuous on C� we have � h d+ � � h d+ as n � �.

Theorem 1.8. Let the function f satisfy the assumptions of Theorem 1.1
or the assumptions of Theorem 1.7, and assume further that f has branch
points in the case of the assumptions of Theorem 1.1. Let F denote the com-
plement of Df , where Df is either the convergence domain of Theorem 1.1 or
the symmetric domain in Theorem 1.7. Then we have

1
nj

?mj nj
*� |F ,

1
nj

`mj nj
*� |F as mj+nj � �. (1.28)

Remark. The limits in (1.28) show that almost all poles and zeros of the
Pade� approximants [mj�nj] cluster on the set F=C"Df . There, they are
distributed asymptotically like the equilibrium distribution |F . In [15] a
more specific conjecture has been made. It is conjectured that if f is an
algebraic function, then only a bounded number of poles of each approxi-
mant [mj �nj] can cluster inside of D.

Practically as a byproduct of the last theorem we can deduce informa-
tion about the asymptotic ( j � �) degree of the approximants [mj �nj],
and similarly informations about the contact of the approximants with the
function f at infinity. It has been mentioned already at the beginning of this
paper that the Pade� approximant [mj �nj] may have a contact with f at
infinity that is less than mj+nj+1, which one would expect in accordance
with the number of free coefficients in [mj�nj]. Of course, the contact can
also be greater. By dmj nj

# Z we denote the interpolation defect, i.e.,
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mj+nj+1&dmj nj
is the order of the zero that the error function

f &[mj�nj] has at infinity.

Theorem 1.9. Under the same assumptions as in Theorem 1.8 we have

lim
j � �

1
nj

dmj nj
=0 (1.29)

and

lim
j � �

1
nj

deg([mj�nj])=1. (1.30)

After the first submission of the present paper to the Journal of
Approximation Theory, papers [25�27] and [6] have appeared with results
related to and also generalizing the theorems stated so far. While in
[25�27] only the convergence of multi-point Pade� approximants
associated with best rational approximants has been studied, the paper [6]
contains a rather comprehensive investigation covering several directions of
the topic. The main subject, perhaps, is the solution of the famous ``1�9''-
problem, which involves the use of multi-point Pade� approximants. In Sec-
tion 3 of that paper results were proved which overlap the material given
here. However, the results presented there are in a more implicit and com-
pressed form, and the proofs follow different paths, which may be shorter,
but since the subject is technically rather difficult it may be helpful to have
a different treatment, which presents at the same time our original
approach. While our approach has not changed, the organization of the
proofs in the present version of the paper differs from that originally sub-
mitted. It is hoped that the new version offers an easier and more accessible
presentation of the material.

The study of Pade� approximants to functions with branch points was
pioneered by J. Nuttall in [16], and the connection to sets of minimal
capacity was shown and explored for the first time in [Nu2]. For a survey
we recommend [4].

The outline of the paper is as follows: In the next section we introduce
and discuss some tools basic to everything that follows. Especially, we
assemble results from potential theory, which differ somewhat from those
given in the usual form. Because of a special normalization used for poly-
nomials, logarithmic potentials also will be defined in a non-standard way,
which makes it necessary to review the central results from potential theory
and adapt them to the new situation. Besides that, results are proved that
are connected with the symmetry property (1.14). In Section 3 we prove
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four auxiliary lemmas that are fundamental for the proofs in the last sec-
tion. Most important are the first two lemmas about the existence of two
special potentials. The proofs of the main results are given in Section 4.

2. NOTATIONS AND SOME RESULTS
FROM POTENTIAL THEORY

Notation about and tools for normalization of polynomials, logarithmic
potentials, the structure of symmetric domains D and their complementary
sets F are introduced. A special normalization of polynomials and poten-
tials is necessary since in our investigations the zeros of polynomials and
correspondingly the masses of potentials may tend to infinity. Classical
results from potential theory are reviewed and presented in a way that
takes care of the changes caused by the special normalization. A major
topic is also the definition and discussion of a so called 8-symmetry and
its immediate consequence, which is connected to the symmetry property of
domains.

Denote by D(x, r) the open disc around x # C with radius r>0, and
D :=D(0, 1). The normalization of polynomials will be based on the linear
factor H(z, x), which is defined as

z&x if x # D�

H(z, x) :={(z&x)� |x| if x # C"D (2.1)

1 if x=�

for all z # C� . By Pn*�Pn we denote the set of all polynomials p # Pn nor-
malized in such a way that

p(z)= `
x # Z( p)

H(z, x), (2.2)

where as before Z( p) denotes the set of all zeros of p. The main advantage
of this normalization becomes apparent if in a sequence of polynomials
p1 , p2 , ... # Pn*, n fixed, some zeros tend to infinity, then the polynomials pj

remain bounded on compact sets of C as j � �, which is not the case, for
instance, if we had chosen the polynomials Pj to be monic. Note that
0 � Pn*.

For a measure + supported in C� we define the logarithmic potential as

p(+; z) :=| log
1

|H(z, x)|
d+(x). (2.3)
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This definition corresponds to the normalization of polynomials in Pn*.
For measures + in C with �C"D log |x| d+(x)<� we have

p(+; z)=| log
1

|z&x|
d+(x)+|

C"D

log |x|d+(x). (2.4)

Usually, the logarithmic potential of a measure + is defined as
� log |z&x|&1 d+(x) (cf.[8; 28, Appendix]), which differs from p(+; z) by
the constant �C"D log |x| d+(x), as (2.4) shows. Of course, this constant can
be infinite. The two definitions are identical if [supp](+)�D� . The potential
p(+; z) defined in (2.3) is never identical to infinity, even if the measure +
has a strong growth near infinity. Actually, the potential also exists if
+([�]){0. Let the measure + be written as +=+1++2 with +1 :=+ | D�

and +2 :=+ |C� "C� "D� . Denote the image measure of +2 under the map
z [ 1�z by +~ 2 . Then we have

p(+; z)= p(+1 ; z)+ p \+~ 2 ;
1
z+++2(C� "D) log

1
|z|

. (2.5)

Note that on the right-hand side of (2.5) both measures have their support
in D� . Formula (2.5) is an immediate consequence of the identity

| log
|x|

|z&x|
d+2(x)=| log

|1�x|
|z&1�x|

d+~ 2(x)

=| log
|1�z|

|1�z&x|
d+~ 2(x). (2.6)

It turns out that the classical tools of potential theory hold without
change or with only minor changes for the version of the logarithmic
potential introduced in (2.3). In the next lemmas we assemble results from
potential theory that are needed in the subsequent analysis. The proofs will
be kept as short as possible. In most cases the proof is an immediate conse-
quence of identity (2.6). The assembling of results from potential theory
demands some space, however; the modified definition (2.3) of the
logarithmic potentials has some surprising consequences that have to be
clarified.

All measures are assumed to be non-negative Borel measures on C� . As
in Theorem 1.8, *� denotes the convergence of measures in the weak topol-
ogy.
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Lemma 2.1 (Principle of Descent). If +n *� +0 and zn � z0 as n � �, zn ,
z0 # C, then

lim inf
n � �

p(+n; zn)� p(+0; z0). (2.7)

Proof. The relation (2.7) is an immediate consequence of (2.5) and the
principle of descent in the theory of logarithmic potentials (cf. [8, Theorem
1.3]). Note that on the right hand side of (2.5) all potentials have defining
measures with supports in D� , therefore there is no difference between
thedefinition (2.3) and the classical definition of logarithmic potentials.
Further, it follows from +n *� +0 that |+n| � |+0| as n � �. K

Lemma 2.2 (Lower Envelope Theorem). If +n *� +0 as n � �, then

lim inf
n � �

p(+n ; z)= p(+0 ; z) (2.8)

for quasi every z # C� .

Proof. As in the principle of descent the lower envelope theorem
follows from identity (2.5) together with the same theorem in the general
theory of potentials (cf. [8, Theorem 3.8]). K

Remarks. (1) It is quite remarkable that the Lower Envelope
Theorem given here holds without any additional condition on the
measures +n . In the case of the classical definition it is often demanded that
all measures +n have their supports in a common compact set V�C, or,
as in [8, Theorem 3.8], that there is a growth condition which has to be
satisfied by all measures +n . (In [8, Theorem 3.8] only Riesz potentials
have been considered; for logarithmic potentials the growth condition has
to be modified appropriately.)

(2) It follows from [8, Remark 2 to Theorem 3.8] that if u(z)
denotes the left-hand side of (2.8) and if the so-called lower semicontinous
regularization is defined as

u~ (z) :=lim inf
w � z

u(w), (2.9)

then u~ (z)= p(+0 ; z) for all z # C� .

Lemma 2.3 (Balayage). Let G�C� be a domain with cap(C� "G)>0 and
+ a positive measure on C� . Then there exists a positive measure +̂, called the
balayage measure of +, with supp(+̂)�C� "G, &+&=&+̂&,and c # R such that

p(+; z)= p(+̂; z)+c (2.10)
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for all z # C� "G� and for all regular points z # �G. If G�DL or if G�C"D�
and � is not an irregular point of �G, then c=0. The measure +̂ is given by

+̂=| |x d+(x), (2.11)

where |x is the harmonic measure on �G for x # (G _ IG), and IG denotes the
set of all irregular points of �G. For all other points x we have |x=$x in
(2.11). The constant c is given by

|
C� "D�

log |x| d(+&+̂)(x) if � � G _ IG

c={ (2.12)

|
C� "D�

log |x| d(+&+̂)(x)&| gG (x, �) d+(x) if � # G _ IG .

Remarks. (1) In the lemma the term regular or irregular means
regular or irregular, respectively, with respect to the Dirichlet problem in
G (cf. [8, Chap. V]).

(2) In general, at irregular points in �G we do not have equality in
(2.10), but rather the inequality

p(+; z)� p(+̂; z)+c (2.13)

for all z # G� . Actually, it can be shown that in (2.13) a proper inequality
holds for all irregular points z in �G and for all z # G if and only if
supp(+) & (G _ IG){<.

(3) For a definition of the harmonic measure |x see [7, Chap. VII].
In [8, Chap. IV, Sect. 1] it is called the Green measure.

Proof. By identity (2.5) the balayage problem is carried over to a
balayage problem of classical logarithmic potentials. We will discuss the
procedure in some detail. Let +1 and +~ 2 be the two measures defined as in
(2.5), and let G� be the image of G under the mapping z [ 1�z. Let +1 and
+~~ 2 be the balayage measures resulting from sweeping +1 out of G and +~ 2

out of G� , respectively. For a definition of balayage see [8, Chap. IV,
Sect. 2]. We have

p(+1; z)=| log
1

|z&x|
d+̂1 (x)+c1 (2.14)

for all z # C� "G� and all regular points of �G, and

p(+~ 2 ; z)=| log
1

|z&x|
d+~^ 2(x)+c2 (2.15)
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for all z # C� "G�� and all regular points of �G� . Since all objects related with
harmonic functions, like harmonic measures, regular and irregular points,
etc., are carried over by the mapping z [ 1�z, identity (2.10) follows from
(2.5), (2.14), and (2.15) if we denote the image of +~� 2 under z [ 1�z by +̂2

and set +̂=+̂1++̂2 . The formula for the constant c given in (2.12) can be
proved by using the formula for the balayage in the case of the classical
definition (cf. [8, formula (4.2.6)]) and then making the changes resulting
from the definition (2.3). K

The next lemma is given here not in its most general form, but it is suf-
ficient for our needs.

Lemma 2.4 (Principle of Domination). Let &, + be measures with
&&&�&+& and c # R a constant. If the measure & is of finite energy,
supp(&)�C compact, and

p(&; z)�p(+; z)+c for quasi every z # supp(&), (2.16)

then

p(&; z)� p(+; z)+c for all z # C� . (2.17)

Proof. First we suppose that both measures & and + have compact sup-
ports. There exist r<1 such that the mapping � : z [ rz maps supp(&) and
supp(+) into D. We have

p(&; z)�p((�(&); �(z))+|
|x|�1�r

log(r max(1, |x| )) d&(x) (2.18)

for all z # C. The same identity holds if & is substituted by +. Of course,
the image measure �(&) is also of finite energy. Since supp(�(&)),
supp(�(+))�D, the logarithmic potentials defined by (2.3) and the classi-
cal definition coincide, and therefore it follows (cf. [8, Theorem 1.27]) that
(2.16) implies (2.17) if we consider the potentials of the measures �(&) and
�(+) instead of & and +, respectively. Together with (2.18) the conclusion
then also follows for the original measures & and +.

If supp(+) is not compact in C, then we consider the restricted measure
+R :=+ | D(0, R) , R>0. We have

| p(+; z)& p(+R ; z)|�+(C� "D(0, R)) log
1

|1&R1 �R|

�2+(C� "D(0, R))
R1

R
(2.19)
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for |z|�R1<R, R sufficiently large and fixed. Since the right-hand side of
(2.19) can be made arbitrarily small by choosing R sufficiently large, the
lemma is also proved for measures + with an unbounded support. K

The next lemma is a consequence of the continuity of logarithmic poten-
tials in the fine topology (cf. [8, Chap. V, Sect. 3]). Let f ( f ��) be super-
harmonic in a simply connected domain G�C. Because of the lower semi-
continuity of f the sets

O :=O(c) :=[z # G | f (z)>c], c # R, (2.20)

are open in the Euclidian topology, and it follows from the superhar-
monicity of f that each component of O is simply connected.

Lemma 2.5. Assume that the function f is superharmonic and possesses a
finite harmonic minorant, and let [Oj] be the set of all components of the
open set O defined by (2.20). If for some x # G we have f (x)<c, then x � �Oj

for any component Oj .

Remark. Note that it cannot be excluded that x # O� "�j Oj .

Proof. Each component Oj is a domain. Hence, Oj is not thin near x for
any x # �Oj , which follows immediately from Wiener's regularity criterion
(cf. [8, Chap. V, Sect. 1 and Sect. 3]). Since f can be represented in G as
the sum of a logarithmic potential and a harmonic function (cf. [8,
Theorem 1.24$]), f is continuous in the fine topology (cf. [8, Chap. V,
Sect. 3]). For the validity of Theorem 1.24$ in [8] it is demanded that f has
a finite harmonic minorant in G. Now let now x # �Oj . Since Oj is not thin
near x it follows that x belongs to the fine closure of Oj , and the fine con-
tinuity of f together with the definition of O in (2.20) implies that f (x)�c,
which proves the lemma. K

Lemma 2.6. Let G�C� be a domain with cap(C� "G)>0. We have

gG(z, x)= p($x&|x ; z)+cx for z, x # G, (2.21)

where |x is the harmonic measure on �G representing the point x # G� , and
cx # R is a coherent depending on x. For x # �G we have $x=|x if and only
if x is a regular point of �G.

Remarks. (1) The harmonic measure |x is the balayage measure of
the Dirac measure $x resulting from sweeping $x out of the domain G (cf.
[8, Chap. IV, Sect. 1]. In [8] the harmonic measure is called the Green
measure. See also (2.11) in Lemma 2.3).
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(2) In the case of the classical definition of the logarithmic potential
one has two different representations for the Green function gG(z, x),
depending on whether x=% � or x=� (cf. [28, Appendix VII, (A.18),
(A.19)]). With the special definition (2.3) representation (2.21) holds for
both cases x=% � and x=�. The constant cx depends continuously on
x # G.

(3) If x=�, then the harmonic measure |� is also known as the
equilibrium distribution on C� "G. If in addition �G�D� , then we have
c�=log(1�cap(�G)) (cf. [28, Appendix V]).

(4) If cap(C� "G)>0 and � � �G, then the harmonic measure |x is of
finite energy for all x # G ([28, Appendix I]).

Proof of the Lemma. The lemma follows from [8, Chap. IV, Sects. 1
and 2]. For the case x=� [La, Chap. IV, Sect. 1], Section 3 is especially
important. See also [28, Appendix VII]. K

The next lemma is generally not considered as a standard tool of poten-
tial theory. However, in the proofs given in Section 3 it is used at several
places and plays there an essential role.

Lemma 2.7 (Balayage with Mass Reduction). Let V�C be a compact
set, C� "V connected, and cap(V )>0.

(i) For each x # C� "V there exists a(x) # (0, 1) such that the measure

|x&a(x)|��0 (2.22)

and a(x) is a measurable function of x # C� "V.

(ii) Let + be a positive measure on C� with supp(+)"V=% <. Then there
exists +̂�0 with supp(+̂)�V, &+̂&<&+&, and a constant c # R such that

p(+; z)= p(+̂; z)+c (2.23)

for all z # Int(V ) and for all regular points z # �V (regular with respect to the
Dirichlet problem in C� "V ). The balayage measure is given by

+̂=| a(x) |x d+(x), (2.24)

where |x is the harmonic measure on �V representing x if x # C� "V or if x
is an irregular point of �V, for all other x we set |x :=$x , and a(x) :=1 for
all x # V.

Remark. The important difference to Lemma 2.3 is that now &+̂&<&+&
for the balayage measure +̂.
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Proof. (i) It is not difficult to verify that for each x # C"V we can find
1>a(x)>0 such that the function

h(z, x) := gC� "V (z, x)&a(x) gC� "V (z, �) (2.25)

is nonnegative (as a function of z) everywhere in C except in a small
neighborhood of infinity. From Lemma 2.6 we know that

h(z, x)= p($x&|x+a(x) |� ; z)+cx&a(x) c� . (2.26)

Since h( } , x)�0 in a neighborhood of V and h( } , x)=0 quasi everywhere
on �V, it follows that h( } , x) is subharmonic in a neighborhood of V. This
proves (2.22). The function a(x)>0 can be chosen to be piece-wise con-
stant on a system of measurable sets covering C� "V. Hence, we can assume
that a(x) is a measurable function.

(ii) Let gC� "V (z, x) be extended in the usual way to all z, x # C� . Then
by (2.25) also h(z, x) is defined for all z, x # C� . Set

h(z) :=| h(z, x) d+(x). (2.27)

Then the function p(+; z)&h(z) is harmonic in C� "V and h(z)=0 for
z # Int(V ) and for all regular points z # �V. With the measure +̂ defined by
(2.24) and (2.26) it follows that p(+; z)&h(z)= p(+; z)+c, which proves
(2.23). K

The next results are related to symmetric domains D�C introduced in
Definition 1.3. The complement F of the domain D, the set F0 , and the arcs
Jj , j # I, are defined as in (1.24). As in Definition 1.3 we assume that F con-
tains at least one analytic arc Jj , i.e., I{<. Since all arcs Jj , j # I, are open,
for each Jj there exists a simply connected domain Uj�C such that

(i) Ui & Uj=< for i, j # I, i{ j,

(ii) Uj & F=Jj for j # I, and

(iii) there exists a conformal mapping .j : Uj � C such that

|Im .j(z)|= gD(z, �) for z # Uj , j # I, (2.28)

.j (Jj)�R, and .j (Uj)=.j (Uj), j # I.

The existence of the mappings .j is an immediate consequence of the
symmetry property (1.14) since (1.14) implies that gD(z, �) can be con-
tinued harmonically across Jj by reflection. The resulting function is the
imaginary part of .j . The mappings .j are determined by (2.28) up to an
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additive real constant. The property .j (Uj)=.j (Uj) can always be
achieved by restricting a given domain Uj .

Definition 2.1. Let U be the union of all domains Uj , j # I, and define
. : U � C by z [ .j(z) if z # Uj . Then the reflection function 8 is defined as

8(z) :=.&1(.(z)), z # U. (2.29)

The function 8 is anti-analytic, i.e. 8(z) is analytic in U, and each point
z # F"F0=�j # I Jj is a fixpoint of 8. The set Uj"Jj , j # I, consists of two
domains, and 8 maps each of these two domains onto its counterpart. By
Jj+ and Jj& we denote the two banks of Jj , j # I.

Definition 2.2. A subset V�U or a function h defined on U is
8-invariant if 8(V )=V or if h(z)=h(8(z)) for all z # U, respectively.
For x # F"F0 and $>0 sufficiently small a 8-disc L(x, $) is defined as

L(x, $) :=.&1(D(.(x), $)). (2.30)

The parameter $ has to be chosen so small that D(.(x), $)�.(U ). For
$>0 small L(x, $) is similar to a circle, and it becomes the more so the
smaller $>0 becomes.

Lemma 2.8. The Green function gD(z, �) and the sets L(x, $) and
(F _ L(x, $))"F0 , x # F"F0 , $>0 sufficiently small, are 8 symmetric.

Proof. The 8-symmetry of gD(z, �) follows from (2.28), and the
8-symmetry of L(x, $) and (F _ L(x, $))"F0 is an immediate consequence
of (2.30). K

We conclude this section with some more lemmas, which are related to
the Green function gD(z, �) and the sets F and F0 .

Lemma 2.9. We have

gD(z, �)=0 for all z # F"F0 , (2.31)

and the Green function has harmonic continuations across each arc Jj , j # I,
from both sides of Jj . These continuations are determined by (2.28).

Proof. Since F"F0=� j Jj , each point z # F"F0 is regular with respect
to Dirichlet problems in D. Hence, (2.31) holds (cf. [8, Chap. IV, Sect. 2]).
The harmonic continuation follows immediately from (2.28) and the
analyticity of 8.

163CONVERGENCE OF PADE� APPROXIMANTS



File: DISTIL 314126 . By:DS . Date:11:07:01 . Time:03:04 LOP8M. V8.0. Page 01:01
Codes: 2853 Signs: 1648 . Length: 45 pic 0 pts, 190 mm

Lemma 2.10. For any x # U the function

hx(z) := gD(z, x)& gD(8(z), 8(x)), z # U, (2.32)

is harmonic in U and we have

hx(z)=0 for all z # F"F0 . (2.33)

For any x0 # F"F0 we have

lim
x � x0

hx(z)=0 locally uniformly for z # U. (2.34)

Proof. It is immediate that hx is harmonic in U, and (2.33) follows from
Lemma 2.9. From the symmetry of the Green function gD(z, x) in the two
variables z and x it follows that gD(z, x)= gD(x, z) � 0 if x � x0 for each
z # �U & D. Because of (2.32) this limit implies hx(z) � 0 for z # �U & D if
x � x0 . The point-wise convergence on �U & D implies the locally uniform
convergence in U. K

Lemma 2.1. Let F1�C, F1=% <, be a compact set with cap(F1)=0.
Then there exists a probability measure +1 with supp(+1)=F1 and

p(+1 ; z)=� for all z # F1 . (2.35)

Proof. The lemma has been proved in [8, Theorem 3.1]. K

Lemma 2.12. For any x # F"F0 there exists a probability measure +2

with supp(+2)�F"[x] and

p(+2; x)< p(+2 ; z) for all z # F"(F0 _ [x]) (2.36)

Proof. Let x # Jj and let $>0 be so small that L(x, $)�U. If we define
$1 :=$(1&t), $2 :=$t, t # (0, 1), then the interval [&$1 , $2] of length $
moves from left to right if t moves through (0, 1) from 0 to 1. We consider
the compact sets

Ft :=F"8&1((8j (x)&$(1&t), 8j (x)+$t)), t # (0, 1). (2.37)

Let |t be the equilibrium measure on Ft , and let ct # R be such that
p(|t ; z)=ct for all z # Ft"F0 . Then p(|̂t ; z)<ct for z # Jj"Ft . Since Jj is an
analytic arc, for $>0 sufficiently small p(|t ; z) has only one minimum on
the subarc Jj "Ft for each t # (0, 1). If t moves from 0 to 1, then the mini-
mum of p(|t ; z) on Jj"Ft moves from one side of x to the other. Hence,
there exists t # (0, 1) such that p(|t ; z) has its unique minimum on F"F0

at x. With +2 :=|t the lemma is proved.
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Lemma 2.13. Let the function f be superharmonic in C, harmonic in C"V
with V�C a compact set, and assume that it has the behavior

f (z)=c1 log
1
|z|

+O(1) as z � �, c1>0. (2.38)

Then there exists a positive measure +3 with &+3&=c1 and supp(+3)�V such
that

f (z)= p(+3 ; z)+c2 for all z # C. (2.39)

Proof. The lemma follows directly from Theorem 1.22$ in [8].

By the next results we built a bridge between weak convergence of
measures and convergence in capacity (cf. Definition 1.2). Let f be a func-
tion superharmonic in a domain G�C� with cap(�G)>0 and assume that
f has a finite harmonic minorant in G. Then there exists a positive measure
&�0 defined on G and a function fG harmonic in G such that

f (z)= fG (z)+gG (&; z), z # G, (2.40)

with gG(&; z) denoting the Green potential

gG (&; z) :=| gG (z, x) d&(x) (2.41)

(cf. [8, Theorem 1.22$]).

Lemma 2.14. Given a sequence [ fn] of functions superharmonic in a
domain G�C� with cap(�G)>0, let the functions f� n be harmonic in G and
&n be positive measures on G such that

fn (z)=f� n (z)+gG(&n ; z) for z # G. (2.42)

If

(i) &n(V ) � 0 as n � � for all compact sets V�G,

(ii) &&n&�c for all n # N,

(iii) limn � � f� n (z)= f (z) locally uniformly for z # G, where f is a
function harmonic in G and f �&�, then fn converges to f in capacity in G,
i.e. for any =>0 and any compact set V�G & C, we have

lim
n � �

cap[z # V | |(fn&f )(z)|>=]=0. (2.43)
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Corollary 2.15. If +n *� + as n � �, then p(+n ; } ) converges to p(+; } )
in capacity in C� "supp(+).

Proof of the Corollary. Let G be a domain with G� �C� "supp(+) and
cap(�G)>0. Define &n :=+n | G� and +n* :=+n&&n . We have &n *� 0 as
n � �, and it is not difficult to verify that p(+n ; z)& gG(&n ; z) � p(+; z)
locally uniformly for z # G as n � �. From Lemma 2.14 it then follows that
p(+n ; } ) converges to p(+; } ) in capacity in G as n � �. Since each compo-
nent of C� "supp(+) can be exhausted by domains G of the considered type,
the corollary is proved. K

Remark. We note that in the corollary convergence in capacity holds in
general not on subsets of supp(+). This will be shown by the following
example: Consider the sequence of polynomials pn(z) :=zn&1, n=1, 2, ... .
We have

+n :=
1
n

&pn
*� * as n � �, (2.44)

where * is the uniformly distributed probability measure on �D. Set
fn := p(+n ; } ), f := p(*; } )=&log max(1, | } | ), and V :=D(0, 2). Then it is
not too difficult to verify that

lim
n � �

cap[z # V | |( fn& f )(z)|>=]=e&=, =>0. (2.45)

Actually, one can show that

e&=�cap[z # V | |( fn& f )(z)|>=]�e&=+1�n (2.46)

for =>0 sufficiently small and n # N sufficiently large.

Proof of Lemma 2.14. Choose =>0 and a compact set V�G & C.
There exists a compact set V*�G with V�Int(V*). Define

Vn* :=[z # V* | |( fn& f )(z)|>=]. (2.47)

In a first step we assume that

V*�D� . (2.48)

Since &n(V*) � 0, we have

lim
n � �

[ gG (&n | V* ; z)&p(&n | V* ; z)]=0 (2.49)
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uniformly for z # V. Because of the assumptions (i), (ii), and (iii) for any
0<$<=�4 there exists n0 # N such that

& f� n& f &V <$,

&gG (&n | G"V* ; } )&V<$ (2.50)

&gG (&n | V* ; } )& p(&n | V* ; } )&V<$,

for all n�n0 , where & } &V denotes the sup-norm on V. From (2.42), (2.47),
and (2.50) it follows that

| p(&n |V*; z)|= p(&n |V* ; z)& gG(&n |V* ; z)& gG(&n | G"V* ; z)

+( fn& f )(z)+( f & f� n)(z)

>=&& f� n& f &V&&gG (&n | G"V*; } )&V

&&gG (&n |V* ; } )&p(&n | V* ; } )&V

>=&3$>$ (2.51)

for all z # Vn* & V. From assumption (i) and the principle of descent
(Lemma 2.1) we know that

lim inf
n � �

p(&n | V*; z)�0 (2.52)

uniformly for z # V. Hence, there exists n1 # N such that p(&n |V* ; z)> &$
for all z # V* and n�n1 . Therefore, it follows from (2.51) that

p(&n | V* ; z)>$ for z # Vn* & V and n�n1 . (2.53)

Comparing the two functions

p \ &n |V*

&n (V*)
; } + and &gC� "(V*n & V ) (z, �)&log cap(Vn* & V )

yields the estimate

cap(Vn* & V )�e&$�&n (V*), n�n1 , (2.54)

where we have used the principle of domination (Lemma 2.4), and
representation (2.21) in Lemma 2.6, together with the special expression
for c� in the case of Vn* & V�D� . Note that the equilibrium distribution
|Vn

* & V is of finite energy if cap(Vn* & V )>0. Since &n(V*) � 0, (2.54)
implies the convergence in capacity.

If assumption (2.48) does not hold true, we can shrink the whole
problem by the mapping z [ rz, 0<r<1. Because of the homogenity of
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the capacity, i.e. cap(rS)=r cap(S), the right-hand side of (2.54) changes
only by the factor 1�r, which proves the lemma in the general case. K

Lemma 1.16. If the two sequences [ fn] and [gn] converge in capacity to
f and g, respectively, in the domain G�C� as n � �, then also the sum
[ fn+gn] converges in capacity to f +g in G.

Proof. Let V�G & C be a compact set, =>0, and define

V 1
n :={z # V | |( fn& f )(z)|>

=
2= ,

V 2
n :={z # V | |(gn&g)(z)|>

=
2= , (2.55)

Vn :=[z # V | |[( fn+gn)&( f +g)](z)|>=].

It is immediate that

Vn�V 1
n _ V 2

n . (2.56)

The proof would be finished here if the capacity were an additive set func-
tion, but unfortunately this is not the case. However, we know the follow-
ing subadditivity (cf. [12, Chap. V]): Let N compact subsets Wj�W�C
be given with W a compact set and cap(Wj)�a for j=1, ..., N. Then

cap(W1 _ } } } _ WN)�a1�N diam(W)1&1�N. (2.57)

Applying (2.57) to (2.56) yields

cap(Vn)�cap(V 1
n _ V 2

n)�- max(cap(V 1
n), cap(V 2

n)) - diam(V ), (2.58)

which proves the lemma. K

3. SOME AUXILIARY LEMMAS.

Theorem 1.8 plays a key role in the proofs of all other results given in
Section 1. Among other things, the theorem is concerned with the
asymptotic distribution of poles of the Pade� approximants [mj �nj] as
j � �. The theorem itself will be proved indirectly by showing that the
equilibrium distribution | of the set F is the only possibility for an
asymptotic distribution for any infinite subsequence of Pade� approximants
[[mj�nj]] (F is the complement of the convergence domain D). The basis
of the indirect proof is the existence of a special measure +. The existence
of this measure is proved in the next lemma. The second lemma contains

168 HERBERT STAHL



File: DISTIL 314131 . By:DS . Date:11:07:01 . Time:03:04 LOP8M. V8.0. Page 01:01
Codes: 2906 Signs: 1725 . Length: 45 pic 0 pts, 190 mm

a similar result, which is needed in the proof of the second statement of
Theorem 1.2. The section is closed with two technical lemmas about the
asymptotic behavior of sequences of polynomials.

The objects D, F, F0 , |=|F , 8, U, and L(x, $) have the same meaning
as in the last section. By c1 , c2 , ... we denote constants.

Lemma 3.1. Let D�C� be a symmetric domain as introduced in Defini-
tion 1.3 and let F1�F be a compact set with F0�F1 , cap(F1)=0. For any
measure +�0 with |+|�1 and +=% | there exists a measure &�0 such that
&&&<1, supp(&) is contained in a preassigned neighborhood of F, and there
exists x # F" F1 and $0>0 with L(x, $0)�U" F1 such that

(i) p(&++; z)=� for z # F1 ,

(ii) minz # F & L (x, $) p (& + + ; z) < minz # F " L (x, $) p (& + +; z) for all
0<$�$0 ,

(iii) p(&++; z)= p(&++; 8(z)) for z # L(x, $0),

(iv) + |L(x, $0)=8(& |L(x, $0)).

Proof. We shall proceed in two stages. In the first one it will be shown
that there exist two measures &1 , &2�0 with &&1+&2&<1, supp(&1)�
U _ F, and supp(&2)�F such that

(a) p(&2 ; z)=� for all z # F1 , (3.1)

(b) p(++&1+&2 ; } ) has a unique minimum on F at a certain point
x # F" F1 ,

(c) p(++&2; z)= p(&1 ; z)+c1 for all z # L(x, $0) with $0>0 such
that supp(&2) & L(x, $0)=< and c1 # R, (3.2)

(d) p(&1 ; z)= p(&1 ; 8(z)) for all z # U" L(x, $1), where $0<$1 with
L(x, $1)�U"F1 and supp(&1)�F _ L(x, $1). (3.3)

The measures &1 and &2 will be constructed in a chain of modifications
of the given measure +. We shall describe this procedure step by step.

Step 1. If &+&=1 and supp(+)�F, then it follows from the assumption
+=% | that for any constant c # R we have

p(+; z)=% c for more than quasi every z # F. (3.4)

Hence, there exists a constant c2 # R such that for both sets
E1 :=[z # F | p(+; z)<c2] and O1 :=[z # C� | p(+; z)>c2] we have

cap(E1)>0 and cap(F & O1)>0. (3.5)
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From the lower semicontinuity of p(+; } ) it follows that O1 is open. Let
[O1 j] be the set of components of O1 . Each O1 j is simply connected
because of the superharmonicity of p(+; } ). Since O1=% < there exists at
least one component, the component O11 . From the definition it follows
that O11 & supp(+)=% <. Let +1 be the balayage measure resulting from
sweeping + out of the domain O11 (cf. Lemma 2.3). Then we have

p(+1 ; z)=p(+; z)+c3 for all z # C� " O11 . (3.6)

Note that C� " O11 has no irregular points (with respect to the Dirichlet
Problem in O11) since O11 is simply connected. Since O11 & supp(+)=% <
and since �O11 is not contained in F, which can be obtained in any case
by choosing c2 in the definition of the sets E1 and O1 appropriately, we
have supp(+1)"F=% < (cf. Lemma 2.3). If one of the two assumptions
|+|=1 and supp(+)�F in step 1 is not true, then we define +1 :=+.

Step 2. If supp(+1)�F, then we have +1=+ and |+|<1. In this case
we set +2 :=+1=+, in all other cases we have supp(+1)"F=% <, and the
measure +1 will be modified in the present step in the following way:
Define E� 2=E� 2 ($1) :=[z # C | dist(z, F)�$1], $1>0, and let E2 be the
polynomial convex hull of E� 2 , i.e. E2 is E� 2 together with all bounded com-
ponents of C"E� 2 . Since supp(+1)"F=% <, we have supp(+1)"E2=% < for
$1>0 sufficiently small. Let +2 be the balayage measure resulting from
balayage with mass reduction of +1 out of the domain C� "E2 , as introduced
in Lemma 2.7. Thus, we have

&+2&<1 (3.7)

and

p(+2 ; z)= p(+; z)+c4 for z # E2" O11 . (3.8)

Note that E2 has no irregular points. In the deduction of (3.8) the identities
(3.6) and (2.23) have been used. After the first two modification steps we
see that (3.7) and (3.8) hold independently of the different cases that were
considered in the definition of +1 and +2 .

Step 3. From Lemma 2.11 we know that there exists a probability
measure _1 on F1 such that

p(_1 ; z)=� for all z # F1 . (3.9)

We choose $2 such that

0<2$2<1&&+2&. (3.10)

170 HERBERT STAHL



File: DISTIL 314133 . By:DS . Date:11:07:01 . Time:03:04 LOP8M. V8.0. Page 01:01
Codes: 3545 Signs: 2226 . Length: 45 pic 0 pts, 190 mm

Because of its lower semicontinuity the potential p(+2+$2_1 ; } ) assumes its
minimum on F. If $2>0 is sufficiently small, then because of (3.9), (3.8),
and definition of O1 , the minimum is assumed at a point x # F" (F1 _ O11).
From Lemma 2.12 we know that there exists a probability measure _2 with
supp(_2)�F"[x] and that p(+2+$2 _1+$3_2 ; } ) has its unique minimum
at the same point x # F"(F1 _ O11) and the number $3 satisfies

0<2$3<1&&+2&&2$2 . (3.11)

Because of (3.8) and since p(+; z)> p(+2 ; z)&c4 for z # E2 & O11, it follows
that also p(++$2 _1+$3_2 ; } ) assumes its unique minimum on F at
x # F"(F1 _ O11). We define

&2 :=$2_1+$3 _2 . (3.12)

From (3.10) and (3.11) it follows that

&+2&+2$2+2$3<1. (3.13)

Step 4. We now come to the most difficult part of the analysis. Define
+3 :=+2+&2 and E3=E3($4) :=[z # C� | p(+3 ; z)&p(+3 ; x)�&&+3&
gD (z, �)+$4], $4>0. From Lemma 2.9 and the structure of F given in
(1.24) we deduce that gD(z, �) is continuous in C" F0 . Therefore it follows
from the lower semicontinuity of p(+3 ; } ) that E3 is closed in C� " F1 . It is
immediate that E3($4) depends monotonically on $4 , and x # E3 ($4) for all
$4�0. The uniqueness of the minimum of p(+3 ; } ) on F at x implies that
�$4>0 E3($4)=[x]. Let $5>0 be such that L(x, $5)�U" F1 . For $4>0
sufficiently small we have E3($4)�L(x, $5). Let O2 be the component of
the open set L(x, $5)"E3($4) with �L(x, $5)��O2 , and set E4 :=
L(x, $5)"O2 . It is immediate that x # E4 , but it is necessary to show that
the stronger assertion

x # Int(E4) (3.14)

holds true. Indeed, let x # Jj and let Uj+ , Uj& be the two subdomains of
Uj"Jj , i.e. Uj=Uj+ _ Jj _ Uj&. Let the function h1 be defined by
h1 := gD( } , �) on Uj+ _ Jj and by h1 :=&gD ( } , �) on Uj&. Because of
the symmetry (1.14), which has been assumed in Definition 1.3, h1 is har-
monic in Uj , and consequently h2 := p(+3 ; } )& p(+3; x)+&+3& h1 is super-
harmonic in Uj . Define O� 3 :=[z # L(x, $5) |h2(z)>$4]. Note that
L(x, $5)�Uj . Let O3 be the component O� 3 with �O3 & �L(x, $5)=% <. From
the definition of the sets E3 , O2 , and O3 it follows that O3 & (Uj+ _ Jj)-
=O2 & (Uj+ _ Jj). The function h2 is superharmonic, and h2(x)=0<$4 .
From Lemma 2.5 we therefore can deduce that x � O3. Next we repeat the
arguments with interchanging the role of Uj+ and Uj&, i.e. h3 is now
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defined by h3 := gD( } , �) on Uj& _ Jj and h3 :=&gD ( } , �) on Uj+, and
further h4 := p(+3 ; } )& p(+3 ;x)+&+3& h3 . The open sets O� 4 and O4 are
defined like O� 3 and O3 , only that the function h4 is used instead of h2 .
With the same arguments as before we conclude that x � O4 . From the
definition of the sets O2 , O3 , and O4 we deduce that O2=O3 _ O4=
L(x, $5)"E4 . This implies that x � O2=O3 _ O4, and thus proves (3.14).

We define

h5(z) :={&&+3& gD (z, �)+$4

p(+3 ; z)&p(+3; x)
for z # C� "Int(E4)
for z # Int(E4).

(3.15)

The function is superharmonic in C and harmonic in C"(F _ E4). Indeed,
the lower semicontinuity can be verified by one-sided approximation with
continuous functions. The mean-value inequality can be verified directly on
the basis of (3.15). From Lemma 2.13 we know that there exists a positive
measure &1 with &&1&=&+3& , supp(&1)�F _ E4�F _ L(x, $5), and

p(&1 ; z)=h5(z)+c5 for z # C. (3.16)

Step 5. From (3.12), (3.13), &&1&=&+3&, and +3=+2+&2 , it follows
that &&1+&2&<1. From (3.14) we deduce that there exists $6>0 with
L(x, $6)�Int(E4). From (3.15), (3.16), (3.8), and +3=+2+&2 it follows
that

p(&1 ; z)= p(++&2 ; z)+c6 for all z # L(x,$6). (3.17)

Assertion (a) is a consequence of (3.9) and (3.12). Assertion (b) is a conse-
quence of the unique minimum of p(++&2 ; } ) at x together with the iden-
tities (3.15) and (3.16), which imply that p(&1 ; } ) has a minimum on F"F1

at the point x. Assertion (c) follows from (3.17) with the choice $0 :=$6 .
Assertion (d) is a consequence of (3.15), (3.16) and the 8-symmetry of
gD( } , �) if one chooses $1 :=$4 . Note that on C� "L(x, $4) we have
p(&1 ; } )=&&+3& gD( } , �)+c5+$4 .

Next, we come to the second stage of the proof. Define

h6(z) :={ p(&1 ; z)
p(&1 ; 8(z))

for z # C� "U
for z # U.

(3.18)

From assertion (d) we deduce that h6 is superharmonic on F _ L(x, $1) and
is harmonic outside of F _ L(x, $1) since it follows from (3.3) that both
functions on the right-hand side of (3.18) coincide on U"L(x, $1). From

172 HERBERT STAHL



File: DISTIL 314135 . By:DS . Date:11:07:01 . Time:03:04 LOP8M. V8.0. Page 01:01
Codes: 2590 Signs: 1421 . Length: 45 pic 0 pts, 190 mm

Lemma 2.13 we therefore know that there exists a positive measure &3 with
supp(&3)�F _ L(x, $1), &&3&=&&1&, and

p(&3 ; z)=h6(z)+c7 for all z # C. (3.19)

We define

& :=&2+&3 . (3.20)

Assertion (i) of the lemma then follows from assertion (a) and (3.20). From
assertion (b) together with (3.18), (3.19), and (3.20) it follows that
p(&++; } ) has its unique minimum at the point x, which implies assertion
(ii) of the lemma. Assertion (iii) follows from assertion (c) together with
(3.18) and (3.19). From assertion (c) it further follows that

+ | L(x, $0)=&1 | L(x, $0) . (3.21)

Note that supp(&2) & L(x, $0)=<. From (3.18) and (3.19) we deduce that

p(&3 ; z)=p(&1; 8(z))+c7 for all z # U, (3.22)

which implies that

&3 | L(x, $0)=8(&1 | L(x, $0)). (3.23)

Since supp(&2) & L(x, $0)=<, (3.20), (3.21), and (3.23) imply assertion
(iv). The proof of Lemma 3.1 is completed. K

With the proof of Lemma 3.1 the perhaps technically most difficult part
of the paper has been completed. The next lemma should be seen as a
variation of Lemma 3.1.

Lemma 3.2. Let D�C� be a symmetric domain as introduced in Defini-
tion 1.3. For any compact set F1�F with F0�F1 , cap(F1)=0, and any
=>0, there exists a measure &�0 such that &&&�=, supp(&) compact, and
there exists x # F"F1 and $0>0 with L(x, $0)�U"F1 such that

(i) p(|+&; z)=� for all z # F1 ,

(ii) min z # F & L (x , $) p(| +& ; z) < minz # F" L(x, $) p(| + & ; z) for all
0<$�$0 ,

(iii) p(|+&; z)= p(|+&; 8(z)) for all z # L(x, $0),

(iv) & | L(x, $0)=0.
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Proof. The structure of the proof is very similar to that of Lemma 3.1;
the arguments are often only a special case of those applied in the earlier
proof. Again we proceed in two stages. In the first stage we show that there
exist two positive measures &1 , &2�0 with &&1+&2&�=, supp(&1)�U _ F,
and supp(&2)�F such that

(a) p(&2 ; z)=� for all z # F1 , (3.24)

(b) p(&1+&2 ; } ) has a unique minimum at a certain point x # F"F1 ,

(c) p(&1 ; z)= p(&2 ; z)+c1 for all z # L(x, $0) and for some $0>0,
c1 # R, (3.25)

(d) p(&1 ; z)= p(&1 ; 8(z)) for all z # U"L(x, $1) and for some $1>$0

with L(x, $1)�U"F1 , (3.26)

(e) &1 | L(x, $0)=&2 | L(x, $0)=0. (3.27)

Let _1 be a probability measure with supp(_1)�F1 such that (3.9) holds
true (cf. Lemma 2.11), and let x be a point on F, where p(_1 ; } ) assumes
its minimum on F. Because of (3.9) we have x # F"F1 . From Lemma 2.12
we know that there exists a probability measure _2 with supp(_2)�F"[x]
such that p(_1+_2 ; } ) has its unique minimum on F at x # F"F1. We
define

&2 :=
=
4

(_1+_2). (3.28)

Hence, &&2&�=�2 and p(&2 ; } ) assumes its unique minimum at x # F"F1 .

As in the text before (3.14) we can show that there exist $2 , $3>0
such that the closed set E1=E1($2) :=[z # C� | p(&2 ; z)&p(&2 ; x)�
&&&2& gD (z, �)+$2]�L(x, $3) and L(x, $3)�U"F1 . Let O1 be the com-
ponent of the open set L(x, $3)"E1 with �L(x, $3)��O1 , and define
E2 :=L(x, $3)"O1 . As in the text after (3.14), we then can show that

x # Int(E2). (3.29)

Hence, there exists $4>0 with L(x, $4)�Int(E2).

Analogously to (3.15) we define

h1(z) :={&&&2& gD (z, �)+$2

p(&2 ; z)&p(&2; x)
for z # C� "Int(E2)
for z # Int(E2),

(3.30)
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and as after (3.15) we deduce from the superharmonicity of h1 that there
exists a positive measure &1 with &&1&=&&2&�=�2, supp(&1)�F _ L(x, $3),
c2 # R, and

p(&1 ; z)=h1(z)+c2 for all z # C. (3.31)

Thus, we have &&1+&2&�=. From (3.30) and (3.31) it follows that

p(&2 ; z)=p(&1 ; z)+c3 for all z # L(x, $4). (3.32)

If $4>0 is chosen sufficiently small, then &2 | L(x, $4)=0 since
supp(&2)�F"[x]. From (3.32) it then follows that also &1 |L(x, $4)=0,
which implies assertion (e) if we choose $0 :=$4 . With the same choice of
$0 and c1=c3 , assertion (c) follows (3.32). As in the proof of Lemma 3.1,
assertion (a) is a consequence of (3.9) and (3.28). Assertion (b) follows
from the fact that p(&2; } ) assumes its minimum on F uniquely at x, and
that because of (3.30) and (3.31) the potential p(&1 ; } ) assumes its mini-
mum on F"F1 at the same point x. Assertion (d) follows from (3.30),
(3.31), and the 8-symmetry of gD( } , �).

We come to the second stage of the proof, which is again very analogous
to the second stage in the proof of Lemma 3.1. Define

h2(x) :={ p(&1 ; z)
p(&1 ; 8(z))

for z # C� "U
for z # U.

(3.33)

As after (3.18) it follows from the superharmonicity of h2 that there exists
a positive measure with &&3&=&&1&, supp(&3)�F _ L(x, $3), and

p(&3 ; z)=h2(z)+c4 for all z # C, (3.34)

and as before we define

& :=&2+&3 . (3.35)

We have &&&�=. Assertion (i) of the lemma follows from assertion (a) and
(3.35). We deduce from Lemmas 2.6 and 2.9 that there exists c5 # R with
p(|; } )=c5 on F"F0 and p(|; } )�c5 on F0 . Assertion (ii) therefore
follows from assertions (b) and (a). Together with (3.33), (3.34), and the
8-symmetry of p(|; } ), assertion (c) implies assertion (iii) of the lemma.
The 8-symmetry of p(|; } ), is an immediate consequence of Lemmas 2.6
and 2.8. At last, assertion (iv) follows from assertion (e) together with
(3.35), (3.34), and (3.33). This completes the proof of Lemma 3.2. K
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In Section 4 at several places we will be concerned with sequences of
polynomials that are asymptotically 8-symmetric in the n th root sense,
and it will be necessary to modify them by polynomial factors in such a
way that the modified sequence is asymptotically 8-symmetric in a
stronger sense. For this procedure we need the next lemma. Its statement
will be prepared by some considerations concerning 8-symmetry.

It is an immediate consequence of the 8-symmetry introduced in Defini-
tion 2.2 that for a function f analytic in U the function log | f | is 8-sym-
metric if and only if the quotient

f
f b 8

#c on U (3.36)

with c # C, |c|=1. For any function f analytic in U, not necessarily 8-sym-
metric, the quotient (3.36) is meromorphic in U. If the quotient is analytic
in U, then it is also different from zero in U, and the set of zeros of f in
U is 8-symmetric.

Lemma 3.3. Let D�C� be a symmetric domain as introduced in Defini-
tion 1.3, and let F1�F be compact with F1$F0 and cap(F1)=0. Further, let
x # F"F1 and $0>0 be such that L(x, $0)�UU"F . We consider a sequence
of polynomials pn # Pn , n=1, 2, ..., with pn(x)=1, Zn :=Z( pn) the set of
zeros of pn , and assume Zn |L(x, $0) to be 8&symmetric for n # N sufficiently
large, i.e.,

Zn |L(x, $0)=8(Zn |L(x, $0)) for n�n0 . (3.37)

If

lim
n � � \ pn (z)

pn (8(z)) +
1�n

=1 (3.38)

locally uniformly for z # L(x, $0), then there exists $1>0 and a sequence of
polynomials hn # Pkn

, n=1, 2, ..., with hn (x)=1, and numbers kn # N such
that

(i) lim
n � �

(kn�n)=0 (3.39)

(ii) lim sup
n � �

|hn(z)| 1�n�1 locally uniformly for z # C, (3.40)

and

(iii) lim
n � �

((hn pn)(z)�(hn pn)(8(z)))=1 locally uniformly

for z # L(x, $1). (3.41)
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Remarks. (1) Assumption (3.38) means that (1�n) log | pn| is
asymptotically 8-symmetric in L(x, $0). The lemma shows that multiplica-
tion by hn produces a sequence log |hn pn| that is also asymptotically
8-symmetric, but now without a division by n.

(2) While the limit (3.38) holds in L(x, $0) the limit (3.41) holds in
general only in a smaller 8-disc L(x, $1). A more sophisticated construc-
tion of the polynomials hn could have extended limit (3.41) to the original
8-disc L(x, $0).

Proof. Assume that 0<$1<$2<$0 . The numbers $1 and $2 will be
fixed below. Because of (3.38) there exists a sequence [=n>0] with =n � 0
such that

(1+=n)&2n� } pn

pn b 8
(z) }�(1&=n)&2n (3.42)

for all z # L(x, $2) and n�n0 . There exists a sequence kn # N, n # N, such
that

kn

n
� 0,

kn

=n n
� �, kn � � as n � �. (3.43)

From (3.43) we deduce that for any m # N and 0<'2<'1<1 and suf-
ficiently large n # N we have

(1&'1)kn (1+=n)mn�(1&'2)kn. (3.44)

Indeed, this follows from

[(1&'1)(1+=n)mn�kn]kn=_(1&'1) \1+m \=n n
kn +

kn

mn+
mn�kn

&
kn

�[(1&'1)(e0+=)]kn�(1&'2)kn. (3.45)

The estimates in (3.45) hold for any =>0 and n # N sufficiently large. We
define

gn (z) :=� pn (8(z))
pn (z)

for z # L(x, $0), n�n0 . (3.46)

The square root is defined for n�n0 since because of (3.37) its argument
is analytic and different from 0. It is immediate that

gn(8(z))=
1

gn (z)
,

( pn gn)(z)

(pn gn)(8(z))
=1 for z # L(x, $0). (3.47)
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From (3.42) and (3.46) we deduce that

(1+=n)&n�| gn (z)|�(1&=n)&n (3.48)

for z # L(x, $2), n�n0 . Since for $0>0 small the curve �L(x, $) is close to
a circle around x, there exists $1 with 0<$1<$2 such that the two curves
�L(x, $1) and �L(x, $2) can be separated by a circle around x. We know
that gn is analytic in L(x, $0) for n sufficiently large and we have the
estimate (3.48). Approximating gn by Taylor polynomials shows that there
exist polynomials hn # Pkn

with hn(x)=1 and numbers 0<'1<'2<1,
c1>0 such that

|( gn&hn)(z)|�c1(1&=n)&n (1&'1)kn (3.49)

for all z # L(x, $1) and n�n0 . Let rn be the approximation error, i.e.,

hn= gn+rn=gn \1+
rn

gn + . (3.50)

Then from (3.48) and (3.49) we deduce the estimate

}\ rn

gn+ (z) }�c1(1+=n)3n (1&'1)kn (3.51)

for all z # L(x, $1) and n�n1 , which yields

} 1+(rn �gn)(z)

1+(rn�gn)(8(z))
&1 }�4c1(1+=n)3n (1&'1)kn

�4c1(1+=n)3n (1&'1)kn<(1&'2)kn (3.52)

for all z # L(x, $1) and n�n2 . The second identity of (3.47) together with
(3.52) gives the asymptotic estimate

( pn hn)(z)

( pn hn)(8(z))
=

( pn gn)(z)

( pn gn)(8(z)) \ 1+(rn �gn)(z)

1+(rn�gn)(8(z)) +
=1+\ 1+(rn�gn)(z)

1+(rn �gn)(8(z))
&1+

=1+O((1&'2)kn) as n � � (3.53)

uniformly for z # L(x, $1), which proves assertion (iii) of the lemma. Asser-
tion (i) follows from (3.43).
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For the proof of assertion (ii) we need some preparation. From (3.48)
and (3.49) we deduce that

|hn (z)|�c2(1&=n)&n (3.54)

for z # L(x, $1), n�n2 , and c2 # R. Thus, for any 3>1 we have

|hn (z)|�3n (3.56)

for z # L(x, $1) and n�n2 . Using the fact that hn # Pkn
and Bernstein's

lemma, we deduce that

|hn (z)|�3n exp[kn gC� "L(x, $1) (z, �)] (3.57)

for z # C and n�n2 . With (3.43) this implies that

lim sup
n � �

|hn (z)| 1�n�3 (3.58)

locally uniformly for z # C. Since 3>1 is arbitrary, (3.58) proves assertion
(ii), which completes the proof of Lemma 3.3. K

Lemma 3.4. Let the domain D, the set F1 , x # F"F1 , and $0>0 be
defined as in Lemma 3.3. Set J :=F & L(x, $0), where $0>0 is so small that
J is an analytic arc, and let pn # Pn *, n=1, 2, ..., be a sequence of polyno-
mials and & a positive measure such that

(i) (1�n) &pn
*� & as n � �,

(ii) limn � � ( pn (z)�pn(8(z)))=c0 uniformly for z # L(x,$0) with
|c0|=1,

(iii) all zeros of pn on J are of even order, and

(iv) p(&; } ) assumes its minimum c1 # R on J uniquely at the point x,
i.e. p(&; x)=c1 and p(&; z)>c1 for all z # J"[x].

Further, let f be a continuous, complex-valued function defined on J, and
f (z)=% 0 for all z # J. Then

lim
n � � } |J

pn (`) f (`) d` }
1�n

=e&c1. (3.59)

Proof. By multiplying f by a constant c2 # C, |c2|=1, and denoting the
product again by f, we can assume that there exists 0<$1<$0 such that

|arg f (z)|�
?
12

for all z # J & L(x, $1). (3.60)
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If $1>0 is sufficiently small, and if we multiply d` by a constant c3 # C,
|c3|=1, we can further assume that

|arg d`|�
?
12

on J & L(x, $1), (3.61)

where the orientation on J is assumed to be the same as in (3.59). From
the assumptions (i) and (iv), and the principle of descent given in Lemma
2.1 and applied to log | pn|&1, it follows rather immediately that

lim sup
n � � } |J

pn (`) f (`) d` }
1�n

�e&c1. (3.62)

Let the arc J be broken down in J=J1 _ J2 with J1 :=J & L(x,$1) and
J2 :=J"J1 . Because of assumption (iv) there exists $2>0 such that

p(&; z)�c1+$2 for all z # J2 . (3.63)

From (3.63), assumption (i), and the principle of descent (Lemma 2.1) we
deduce as in (3.62) that

lim sup
n � � } |J2

pn (`) f (`) d` }
1�n

�e&$2e&c1. (3.64)

Next, we estimate the integral over J1 , which is the more difficult part of
the proof. Since 8(z)=z for all z # J, we have

arg \ pn(z)

pn (8(z)) +=2 arg pn (z) for z # J"Z( pn). (3.65)

Multiplying pn by a constant c4 # C, |c4|=1, and denoting the product
again by pn , we deduce from the assumptions (ii) and (iii) that there exists
n0 # N such that

|arg pn (z)|�
?
12

for all z # J, n�n0 . (3.66)

At the points of Z( pn) & J the value of arg pn is defined by continuous
completion. From (3.60), (3.61), and (3.66) it follows that

} |J1

pn (`) f (`) d` }�-
1
2 |

J1

| pn (`)| | f (`)| d|`| for n�n0 . (3.67)

since |arg( pnfd`)|�?�4 on J1 . Comparing p(&; } )& p(&; x) with the func-
tion &&&& gC� "J ( } , �), it follows from Assumption (iv) that for any

0<=<$2�5 (3.68)
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there exists $3>0 such that

D(x, $3)�L(x, $1) and p(&; z)� p(&; x)&= for all z # D(x,$3). (3.69)

From the assumptions (i) and (iv), the principle of descent (Lemma 2.1),
and (3.69) it follows that there exists n1 # N such that

&pn&D(x, $3)�e2n=e&nc1 for n�n1 , (3.70)

where & } &K denotes the sup-norm on the set K. By Bernstein's inequality
about derivatives of polynomials we deduce from (3.70) that

&p$n&D(x, $3)�
n
$3

e2n=e&nc1 for n�n1 . (3.71)

Let | pn| assume its maximum on J & D(x, $3) at the point xn # J & D(x, $3).
It then follows from the assumptions (i) and (iv) and the Lower Envelope
Theorem given in Lemma 2.2 that xn � x and | pn(xn)| 1�n � e&c1 as n � �.
Hence, there exists n2 # N such that

| pn(xn)|�e&n=e&nc1 for n�n2 . (3.72)

We define

'n :=
$3

2n
e&3n=. (3.73)

If n2 is chosen large enough, we have

dist(xn , �D(x, $3))>'n for n�n2 . (3.74)

From (3.71), (3.72), and (3.73) we deduce that

| pn(z)|�| pn(xn)|&'n &p$n&D(x, $3)�
1
2 e&n=e&nc1 (3.75)

for all z # D(xn , 'n). Since 'n � 0 and xn � x there exists c5>0 such that

| f (z)|�c5 for all z # J & D(xn ,'n). (3.76)

From (3.75), (3.76), (3.73), and (3.74) it follows that

|
J1

| pn(`)| | f (`)| d |`|�|
J & D(xn, 'n)

| pn(`)| | f (`)| d |`|

�
1
2

e&n=e&nc1c5

2
2n

e&3n=�
c5

2n
e&4n=e&nc1, (3.77)
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and therefore with (3.67) that

lim inf
n � � } |J1

pn (`) f (`) d` }
1�n

�e&4=e&c1. (3.79)

Using (3.64) and (3.68), we deduce from (3.79) that

lim inf
n � � } |J

pn (`) f (`) d` }
1�n

�e&4=e&c1. (3.80)

Since =>0 can be chosen arbitrarily small, (3.80) together with (3.62)
proves (3.59). K

4. PROOFS OF RESULTS IN SECTION 1

In the present section all the new results of Section 1 will be proved. We
start with two preparatory lemmas. Then the first part of Theorem 1.8 will
be proved. The proof of Theorem 1.7 follows, and after that the proofs of
Theorems 1.1, 1.2, and 1.4, the Proof of the second part of Theorem 1.8,
and finally the proof of Theorem 1.9 are presented.

Lemma 4.1. Let f be analytic near infinity and let C be a negatively
oriented integration path such that f is analytic on C and in Ext(C). Further,
let ( pmn , qmn) # Pm_(Pn"[0]), m, n # N, be a pair of Pade� polynomials, i.e.,
let (1.3) hold true, and let ( p~ mn , q~ mn) be a reduced pair such that p~ mn and q~ mn

are coprime. The reversed denominator polynomial Qn is defined by

Qn (z) :=zdeg (q~ mn)q~ mn \1
z+ # Pn*. (4.1)

The denominator polynomial Qn satisfies the orthogonality relation

�
C

`kQn (`) `m&n d`=0 for k=0, ..., n&1. (4.2)

By the approximation error of the Pade� approximant we have the representa-
tion

f (z)&[m�n](z)=
1

2?i
zn&m

(Qn P)(z) �
C

(Qn Pf )(`)`m&n

`&z
d` (4.3)

for z # Ext(C) and for any P # Pn*. (The Pade� approximant [m�n] has been
defined in (1.2).)
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Remark. The pair of Pade� polynomials ( p~ mn , q~ mn) can be multiplied by
a nonzero constant without violating (1.3). Therefore, the pair can be nor-
malized such that Qn # Pn*, as has been assumed in (4.1). Note also that
0 � Pn*.

Proof. Multiplying relation (1.3) by zk+m&n+n~ , k=0, ..., n&1, n~ :=
deg (q~ mn), yields

zkzm&nQn (z) f (z)&zk+m&n+n~ p~ mn \1
z+=O(zk&n&1) as z � �. (4.4)

From Cauchy's Theorem it then follows that

�
C

`k+m&n+n~ p~ mn \1
`+ d`=0 (4.5)

since deg( p~ mn)�m&n+n~ , and the same integral applied to the right-hand
side is also zero since there is a zero at infinity of order at least two. This
proves (4.2).

Multiplying relation (1.3) by zm&n+n~ P(z) with P # Pn* and using (4.1)
yields

zm&nP(z) Qn (z) f (z)&P(z) zm&n+n~ p~ mn \1
z+=O(z&1) as z � �. (4.6)

Applying Cauchy's integral formula then gives

zm&n(Qn P)(z)[ f (z)&[m�n](z)]=
1

2?i �
C

(Qn Pf )(`)`m&n

`&z
d` (4.7)

for z # Ext(G), which proves (4.3). We have used the definition (1.2) of the
Pade� approximant. K

In Lemma 4.1 the integration path C was rather arbitrary. In the next
lemma we show the construction of a ``good'' integration path for the
integrals (4.2) and (4.3). This path will typically be used in the subsequent
proofs. Let D be a symmetric domain as introduced in Definition 1.3,
F=C� "D, C a negatively oriented integration path with F�Int(C), and
F1�F a compact set with F0�F1 and cap(F1)=0. Further, let V�C be
an open set with F1�V. Then there exists a chain of smooth curves C1 in
V "F1 that is homologous to C in C� "F1 . Analoguously to (1.24), [Jj]j # I

now denotes the family of open arcs that form F "F1 . It has been assumed
in Definition 1.3 that F" F0=% <. If V is small enough, then the same is true
for C1 , and we have F" Int(C1)=% <. Like F"F1 , the set F "Int(C1) consists
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of analytic arcs, but now these arcs are closed. They are denoted by 1j ,
j # I1 ; i.e.,

.
j # I1

1j=F"Int(C1). (4.8)

Each 1j , j # I1 , is a subarc of some Jj $ , j $ # I.

Lemma 4.2. Let 1j+ and 1j& denote the two banks of the arc 1j , j # I1 ,
each with opposite orientations. Then the orientation of each pair (1j+ , 1j&)
can be chosen in such a way that the chain of arcs and curves

C0 :=C1+ :
j # I1

(1j++1j&) (4.9)

is closed and homologous to C in C� "F1 , and there exists a chain of curves
C� 0 arbitrarily close to C0 , which is fully contained in D, and C� 0 is
homologous to C in D.

Remark. The chain C0 will be the standard integration path in the
analysis that follows. Note that the main part of C0 is contained in F" F1 ;
only C1 lays, except for isolated points, outside of F1 , but since C1 is con-
tained in the open set V it can be chosen arbitrarily near to F1 . This last
property will be essential for proving integral estimates. The chain of curves
C1 can always be assumed to consist of only finitely many smooth curves.

Proof. Let V1 be an open set with V1�V, F1�V1 , and �V1 be smooth
and consist of finitely many closed curves. Let C1 be �V1 with an
appropriate orientation, and consider the level lines

C$1 :=[z # C"V1 | gD (z, �)=r], r>0. (4.10)

The set C$r consists of finitely many analytic arcs. For r � 0 these arcs tend
to the arcs 1j , j # I1 , from both sides of F"V1 , which is a consequence of
Lemma 2.9. For r>0 sufficiently small let the domain V2 be defined by

V2 :=[z # C� "V1 | gD (z, �)>r]. (4.11)

The boundary �V2 with negative orientation is denoted by C� 0 ; it is
homologous to C. Since I1 is finite, all arcs in Cr $ are homotopic to
[1j+ , 1j&] j # I1

for r>0 sufficiently small, and (4.10) together with
Lemma 2.9 defines for r0�r>0 a homotopic variation of C$r0

. This shows
that C0 is also homologous to C. K
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Proof of Theorem 1.8 (First Part). We prove that the first limit in
(1.28) holds true under the assumptions made in Theorem 1.7. The full
theorem, i.e. the second limit in (1.28) under the assumptions of Theorem
1.7 and both limits in (1.28) under the assumptions made in Theorem 1.1,
will be proved later. In order to simplify the notation, we assume that in
the sequence of indices [(mj , nj)] each component appears at most once,
which implies that we can write n :=nj and m=m(n) :=mj , n # N�N.
Since the sequence [(m, n)]n # N has to satisfy (1.6), it follows that

mj&nj

nj
=

m&n
n

� 0 as n � �. (4.12)

With the definition of the reversed denominator polynomials Qn in (4.1) we
define

?n :=
1
n

?mj nj
=

1
n

&Qn
, (4.13)

and prove

?n *� | as n � �, (4.14)

where |=|F is the equilibrium distribution on F. The convergence (4.14)
will be proved indirectly. We assume that there exists an infinite sub-
sequence N�N such that

?n *� +=% | as n � �, n # N. (4.15)

It is immediate that +�0 and &+&�1. Thus, the assumptions of Lemma
3.1 are satisfied.

As already mentioned earlier, Lemma 3.1 will be the main tool of the
proof. From the assumptions of Theorem 1.7 it follows that there exists a
compact set F� 1�F with cap(F� 1)=0 such that the jump functions gj , j # I,
defined in (1.24) for each arc Jj , j # I, are continuous and different from
zero on Jj"F� 1 . We define

F1 :=F0 _ [0] _ F� 1 . (4.16)

Then cap(F1)=0. From Lemma 3.1 it follows that there exists $0>0,
x # F"F1 with L(x, $0)�U"F1 , and a measure & with &�0 and |&|<1 such
that the assertions (i) through (iv) in Lemma 3.1 hold true.

With the help of the measure & a sequence of polynomials Pn # Pn*, n # N
is defined in several steps. We define

&1, n :=8(?n |L(x, $0)), n # N, (4.17)
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and assume that P1, n # Pn* is chosen such that p(&1, n ; } )=&(1�n)
log |P1,n|. Without loss of generality we can assume that +(�L(x, $0))=0
since otherwise we can choose a smaller $0>0, for which this assumption
as well as Lemma 3.1 is true. It then follows from (4.15) that there exists
a positive measure &1 such that

&1, n *� &1 as n � �, n # N. (4.18)

We have

1
n

deg(P1, n) � |&1| as n � �, n # N, (4.19)

and because of (4.15), (4.17), and assertion (iv) in Lemma 3.1, it follows
that

&2 :=&&&1�0 and supp(&2) & L(x, $0)=<. (4.20)

In the next step for each n # N we select [n &&2&] points from supp(&2) in
such a way that the sequence of polynomials P2, n # Pn* satisfies

1
n

&P2,n
*� &2 as n � �, n # N. (4.21)

We have

1
n

deg(P2, n) � &&2& as n � �, n # N. (4.22)

Define

&3, n :=
m&n

n
$0 , P3, n(z) :=zm&n. (4.23)

Actually, P3, n is a polynomial only if m�n, otherwise P3, n is a rational
function. However, the functions P3, n are very special, and it seems that all
conclusions are rather immediate and clear without giving to this aspect
any special consideration. We have

&3, n *� 0 as n � �, n # N, (4.24)
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and

lim sup
n � �, n # N

|P3, n (z)| 1�n�1 (4.25)

locally uniformly in C"[0].

Set

c1 :=p(&++; x). (4.26)

From assertion (ii) of Lemma 3.1 we deduce that there exists =1>0 such
that

p(&++; z)�c1+=1 for z # F"L(x, $0), (4.27)

and assertion (i) of Lemma 3.1 implies that there exists an open set V�C
with F1�V,

V� & L(x, $0)=<, (4.28)

and

p(&++; z)�c1+=1 for z # V� . (4.29)

From the principle of descent (Lemma 2.1) and the limits (4.15), (4.18),
(4.21), and (4.24) it follows that

lim sup
n � �, n # N

|(Qn P1, n P2, nP3, n)(z)|1�n�exp[&p(++&; z)]�e&c1&=1 (4.30)

for all z # (V� _ F )"L(x, $0), and the overall asymptotic inequality, i.e. the
inequality between the limsup on the leftside of (4.30) and e&c1&=1 on the
right-hand side, holds uniformly on (V� _ F )"L(x, $0).

Let xn # F, n # N, be a sequence with xn � x as n � �, n # N, and
P1, n(xn)=% 0, Qn(xn)=% 0. Define

P� n :=
P1, nP2, nP3, n

arg(QnP1, nP2, nP3, n)(xn)
, n # N. (4.31)

Because of (4.17) and (4.16), we have

Z(QnP� n) | L(x, $0)=8(Z(Qn P� n) | L(x, $0)), (4.32)
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and from (4.32), assertion (iii) of Lemma 3.1, and the limits (4.15), (4.18),
(4.21), and (4,24) we deduce that

lim
n � �, n # N

1
n

log } (Qn P� n)(z)
(Qn P� n)(8(z)) }= p(++&; z)& p(++&, 8(z))=0 (4.33)

locally uniformly for z # L(x, $0). From Lemma 3.3, (4.31), (4.32), and
(4.33) it follows that there exist P4, n # Pn*, n # N, with

1
n

deg(P4, n) � 0 as n � �, n # N, (4.34)

lim sup
n � �, n # N

|P4, n(z)| 1�n�1 (4.35)

locally uniformly for z # C, and

lim
n � �, n # N

(QnPn)(z)zm&n

(QnPn)(8(z)) 8(z)m&n
=1 (4.36)

locally uniformly for z # L(x, $0), where

Pn :=P� nP4, n�P3, n (4.37)

and the normalization used in (4.31) as well as in (4.23) has been used to
secure the assumption (3.38) of Lemma 3.3. Note that the quotient in
(4.36) is analytic in L(x, $0). From (4.19), (4.22), and (4.34) if follows that

lim
n � �, n # N

1
n

deg(Pn)=&&&<1. (4.38)

The expression (Qn Pn f )(z)zm&n is analytic in D"F1=D"[0] and pos-
sesses a continuous continuation from D to �D"F1 with different boundary
values from both sides of F"F1 . From Lemma 4.2 and the definition of the
jump functions gj , j # I, in (1.25), it follows that

�
C

(Pn Qn f )(`)`m&n d`=�
C0

(PnQnf )(`)`m&n d`

=�
C1

(Pn Qn f )(`)`m&n d`

+ :
j # I1

|
1j

(Pn Qngj)(`)`m&n d`. (4.39)
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Because of (4.8) and the remarks made after (4.8) there exists j $ # I such
that x # Jj $ and correspondingly j # I1 with

F & L(x, $0)=Jj $ & L(x, $0)=1j & L(x, $0). (4.40)

Let C2 denote the integration path C0 without the two subarcs
1j\ & L(x, $0). (For a definition of 1j+ and 1j& see Lemma 4.2). Since
Length(C2)<� it follows from (4.30) that

lim sup
n � �, n # N } �C2

(Pn Qn f )(`)`m&n d` }
1�n

�e&c1&=1. (4.41)

On the other hand, the limits (4.15), (4.18), (4.21), and (4.24); the definition
of Pn in (4.37); and the definition of F1 in (4.16) shows that Lemma 3.4 is
applicable, and we deduce from (3.59) in this lemma, from (4.26), and from
assertion (ii) of Lemma 3.1 that

lim
n � �, n # N } |F & L(x, $0)

(Pn Qn gj)(`)`m&n d` }
1�n

=e&c1. (4.42)

From (4.39), (4.41), and (4.42) it follows that

lim
n � �, n # N } �C

(PnQn f )(`)`m&n d` }
1�n

=e&c1. (4.43)

From (4.38) we immediately deduce that deg(Pn)<n for n # N sufficiently
large, and from the orthogonality relation (4.2) of Lemma 4.1 we then
know that

�
C

(PnQn f )(`)`m&n d(`)=0 (4.44)

for n # N sufficiently large. Since (4.43) and (4.44) contradict each other,
assumption (4.15) must be false, and therefore we have proved that (4.14)
holds true, which completes the first part of the proof of Theorem 1.8. K

The second part of the proof of Theorem 1.8 will be given below, after
the proofs of Theorems 1.7, 1.1, 1.2, and 1.4 have been performed.

Proof of Theorem 1.7. The proof is divided into two parts: in the first
part the limit (1.9) is proved and in the second the limit (1.10) is proved.
In both cases the error formula (4.3) will play a basic role. In order to
prove limit (1.9) it is sufficient to derive an upper estimate of the integral
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in this formula, while the second part of the proof demands a more careful
investigation of the asymptotic behavior of this integral. For this investiga-
tion Lemma 3.2 is needed.

As in the proof of Theorem 1.8 (First Part), we assume for the simplifica-
tion of notation that in the sequence of indices [(mj , nj)]j # N each nj

appears at most once. Thus, we can write n instead of nj and m=m(n)
instead of mj . By N�N we denote the subsequence of all numbers n. Since
in Theorem 1.7 it has been assumed that the sequence [(m, n)]n # N satisfies
(1.6), it follows that the limit (4.12) holds true.

Proof of Limit (1.9). Define

Hn (z) :=
1

2?i �
C

Q2
n (`) f (`) `m&n

`&z
d`, z # Ext(C), (4.45)

where C is a negatively oriented integration path around infinity such that
f is analytic in Ext(C) and on C. The path C can be varied in the domain
D without changing the value of Hn(z). The denominator polynomial
Qn # Pn* has been introduced in Lemma 4.1. With the abbreviation (4.45)
the error function (4.3) can be written as

( f &[m�n])(z)=
zm&n

Q2
n (z)

Hn (z), z # Ext(C). (4.46)

Using orthogonality (4.2), we deduce that

1
2?iQn (z) �

C

(Q2
n f )(`)`m&n

`&z
d`&

1
2?iP(z) �

C

(PQn f )(`)`m&n

`&z
d`

=
1

2?i(PQn)(z) �
C

Qn (`) P(z)&Qn (z) P(`)
`&z

(Qn f )(`)`m&n d`=0,

(4.47)

which implies that

Hn(z)=
Qn(z)

2?iP(z) �
C

(PQn f )(`) `m&n

`&z
d` (4.48)

for any P # Pn* and z # Ext(C).

From Lemma 2.9 we know that gD(z, �)=0 for all z # F"F0 , where F0

is the set introduced in (1.24) in the definition of the symmetric domain D.
In this definition it has been assumed that cap(F"F0)>0. It follows from
representation (2.21) of the Green function in Lemma 2.6 and from Lemma
2.9 that there exists a constant c0 # R such that

p(|; z)=&c0 for all z # F"F0 (4.49)
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and |=|F denotes the equilibrium distribution on F. In the special case
of F�D we have c0=log cap(F ) (cf. Remark 3 after Lemma 2.6). Our
immediate aim is to show that

lim sup
n � �, n # N

1
m+n

log |Hn (z)|�c0 (4.50)

locally uniformly for z # D. Indeed, let V�D"[0] be a compact set and
=>0; further, let the set F1 be defined as in (4.16) in the proof of Theorem
1.8 (first part), i.e., F1=F0 _ [0] _ F� 1 , where F� 1�F is a compact set with
cap(F� 1)=0 such that the jump functions gj , j # I, defined in (1.25) for each
arc Jj of F"F0 , are continuous and different from zero on Jj"F� 1 . From
Lemma 2.11 we know that there exists a probability measure +1 with
supp(+1)�F such that (2.35) holds true. This implies that there exists
1>$1>0 such that

| p($1 (|&+1); z)|�= for all z # V,
(4.51)

and

p($1+1+(1&$1)|; z)�&c0&= for all z # F.
(4.52)

The last inequality is possible because of (4.49). Since p($1+1+(1&$1) |; z)
=� for all z # F1 , there exists an open set V1 with F1�V1 , V1 & V =<, and

p($1+1+(2&$1)|; z)�&2c0&= for all z # V1 . (4.53)

In Lemma 4.2 it has been shown that there exists an integration path C0

as given in (4.9) for the integral in (4.45), which is completely contained in
F _ V1 . Let the polynomials Pn # P*m , m=m(n), n # N, be chosen such that

1
n

&Pn
*� $1 +1+(1&$1)| as n � �, n # N. (4.54)

Because of (4.12) such polynomials can always be selected. It follows from
(4.13) and the limit (4.14) which was proved under the assumptions of
Theorem 1.7 in the proof of Theorem 1.8 (first part) that

1
n

&Qn
*� | as n � �, n # N. (4.55)
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The two limits (4.54) and (4.55) together with the principle of descent
(Lemma 2.1), the estimates (4.52) and (4.53), and the limit (4.12) yield that

lim sup
n � �, n # N

1
m+n

log |(QnPn)(z)|�c0+
=
2

(4.56)

uniformly for z # C0 . (In our notation we do not differentiate between C0

and its impression.) As length(C0)<�, it follows from (4.56) that

lim sup
n � �, n # N

1
m+n

log } 1
2?i �

C0

(QnPn f )(`)`m&n

`&z
d` }�c0+

=
2

(4.57)

uniformly for z # V.

From the estimate (4.51) and the two limits (4.54) and (4.55) it follows
that

lim
n � �, n # N } 1n log } Qn (z)

Pn (z) } }�= (4.58)

uniformly for z # V. With the estimates (4.57) and (4.58) we deduce fom
(4.48) and (4.12) that

lim sup
n � �, n # N

1
m+n

log |Hn (z)|�c0+= (4.59)

uniformly for z # V. Since V and =>0 were arbitrary, the asymptotic
estimate (4.50) is proved.

We are now prepared to finish the proof of limit (1.9). Let V�D"[�]
be an arbitrary compact set and =~ >0. Define

E� n :=[z # V | | f &[m�n])(z)|>(G(z)+=~ )m+n]. (4.60)

There exists =>0 such that

log } 1+
=~

G(z) }�2= for all z # V. (4.61)

The function G has been defined in (1.8). Note that under the assumption
that D is a symmetric domain, it follows from Definition 1.3 that
cap(F"F0)>0, and therefore also that cap(F"F1)>0, and consequently
G(z)>0 for all z # D"[�]. From (1.8) and (4.49) we deduce that

log G(z)=&gD (z, �)= p(|; z)+c0 . (4.62)
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From the estimate (4.50) and error formula (4.46) it follows that

1
m+n

log
|( f &[m�n])(z)|

G(z)m+n

�&
2

m+n
log |Qn(z)|&log G(z)+

|m&n|
m+n

log |z|+c0+= (4.63)

for all z # V and n sufficiently large. The sequence of functions

fn (z) :=&
2

m+n
log |Qn (z)|&log G(z)+c0= p \ 2

m+n
&Qn

&|; z+ ,

(4.64)

n # N, will be investigated in more detail. The last equality in (4.64) follows
from (4.62). Because of the limits (4.55) and (4.12) it follows from
Corollary 2.15 that fn � 0 in capacity in D as n � �, n # N. From (4.12) it
further follows that ((m&n)�(m+n)) log |z| � 0 for all z # C"[0]. From
Lemma 2.16 we know that the sum of two sequences converges in capacity
if the two sequences converge in capacity separately. Hence, it follows that
the right-hand side of (4.63) converges to 0 in capacity in D. As a conse-
quence it follows that the sets

En :={z # V } &
2

m+n
log |Qn (z)|&log G(z)+

m&n
m+n

log |z|+c0>==
(4.65)

satisfy

cap(En) � 0 as n � �, n # N. (4.66)

From (4.61), (4.63), and (4.65) we conclude that

1
m+n

log
|( f &[m�n])(z)|

G(z)m+n

�
2

m+n
log |Qn (z)|&log G(z)+

m&n
m+n

log |z|+c0+=

�2=�log } 1+
=~

G(z) } (4.67)
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holds for all z # V"En and n # N sufficiently large. The definitions (4.60)
and (4.65) together with (4.61) and (4.67) imply that E� n�En for n # N suf-
ficiently large. Hence, cap(E� n) � 0 as n � �, n # N, follows from (4.66),
which completes the proof of limit (1.9).

Proof of Limit (1.10). The most difficult part of the proof is to show
that (1�(m+n)) log |Hn (z)| converges to c0 in capacity in the domain D.
For this purpose it is no longer sufficient to know only the asymptotic
upper estimate for Hn as in (4.50).

Assume that D1 is a subdomain of D with D1�D and � # D1 . Since the
functions &(1�(m+n)) log |Hn(z)| are superharmonic in D, we can, as in
(2.40), introduce the decomposition

1
m+n

log |Hn (z)|=h� (z)& gD1
(&n ; z),

(4.68)

where h� n is harmonic in D1 and gD1
(&n ; } ) is the Green potential of the non-

negative measure &n in the domain D1 . We have that supp(&n)�D1 and
(m+n) &n is the counting measure of the zeros of the function Hn in the
domain D1 .

For an indirect proof we assume that the functions (1�(m+n))
log |Hn(z)| do not converge in capacity to the constant c0 in the domain
D. Then because of Lemma 2.14 and the asymptotic estimate (4.50) at least
one of the following two assertions holds true: we have

lim sup
n � �, n # N

&&n&>0 (4.69)

or

lim inf
n � �, n # N

h� n (z)<c0 for z # D1 . (4.70)

In either case it follows that there exists an infinite subsequence of N, which
we continue to denote by N, and a constant

c1<c0 (4.71)

such that there exists a closed set V2�D1 with � # Int(V2) and �V2 a
smooth curve endowed with a negative orientation, the curve is denoted
C2 , and we have

lim sup
n � �, n # N

1
m+n

log |Hn(z)|�c1 uniformly for all z # C2 . (4.72)
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Let =2 satisfy 0<=2<(c0&c1)�3. From the special normalization used in
(2.3) in the definition of the logarithmic potential it follows that there exist
0<=1<(c0&c1)�|3c0| such that

p(&; z)�&=2 for all z # C2 (4.73)

and all positive measures & on C with &&&�=1 . Let the sequence of polyno-
mials p~ n # P*

[n &&&] be chosen in such a way that

2
m+n

&p~ n
*� & as n � �, n # N. (4.74)

The choice is possible because of the limit (4.12). From (4.74), (4.73) and
the principle of descent (Lemma 2.1) it follows that

lim sup
n � �, n # N

1
m+n

log | p~ 2
n (z)|�=2 uniformly for all z # C2 . (4.75)

From the limits (4.72) and (4.75) we deduce that

1
m+n

log } �C2

( p~ 2
n Hn)(z) dz }�c1+=2<(1+&&&) c0&=2 (4.76)

for all n # N, n�n2([ p~ n]). The last inequality in (4.76) is a consequence of
(4.71) and the three inequalities =2<(c0&c1)�3, =1<(c0&c1)�|3c0|, and
&&&�=1 .

We choose & to be a measure as described in Lemma 3.2; the number
=>0 and F1 in Lemma 3.2 are taken to be =1 and F1 as defined in (4.16).
By using the assertions proved in Lemma 3.2, we shall show that the first
inequality in (4.76) cannot be true, which proves the convergence in
capacity of (1�(m+n)) log |Hn (z)| to c0 in D.

Since the point x # F"F1 and the number $0>0 are assumed to be the
same as in Lemma 3.2, the assertions (i) through (iv) of Lemma 3.2 hold
true. In addition we assume that $0>0 is chosen so small that

L(x, $0) & V2=<. (4.77)

Let polynomials Pn, 3 # Pn*, n # N, be chosen in such a way that the weak
limit (4.74) holds true with P� n substituted by Pn, 3 , and & is now the
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specially chosen measure in accordance with Lemma 3.2. For each n # N
the polynomials Pn, 1 , Pn, 2 # Pn* are defined by

&Pn , 1
=&Qn

| C"L(x, $0) ,

&Pn , 2
=8(&Qn

| L(x, $0)), (4.78)

i.e., Pn, 1 has the same zeros as Qn outside of L(x, $0) and no zeros on
L(x, $0), while Pn, 2 has no zeros outside of L(x, $0); on L(x, $0) the zeros
of Pn, 2 are the image of zeros of Qn under the reflection mapping 8, which
has been introduced in (2.29) of Definition 2.1. From limit (4.55) together
with the 8-symmetry of |, (4.75), and (4.76), we deduce that

lim
n � �, n # N

1
m+n

log } Qn (z)
(Pn, 1 P

n, 2)(z) }=0 (4.79)

uniformly for all z # V2, which implies with (4.48) and (4.76) that for n3 # N
sufficiently large we have

1
m+n

log } 1
2?i �C2

P2
n, 3(z) �

C

(Pn, 1Pn, 2Qn f (`)`m&n

`&z
d` dz }

�(1+&&&) c0&=2 (4.80)

for all n # N, n�n3 . In order for the function Hn in (4.76) to be defined,
we had to assume that V2�[Ext](C), or equivalently C�Int(C2). Inter-
changing integration in (4.80) yields

1
m+n

log } � (Pn Qn f )(`)`m&n d` }�(1+&&&)c0&=2 (4.81)

for all n # N, n�n3 . In (4.81) the polynomial Pn is defined as

Pn :=P2
n, 3Pn, 2 Pn, 1 . (4.82)

By the techniques of estimation of line integrals as applied after (4.26) in
the proof of Theorem 1.8 (first part), we shall next prove an inequality that
contradicts (4.81).

From assertion (ii) in Lemma 3.2 we know that the potential p(|+&; } )
assumes its minimum on F at the point x # F "F1 . With the same objective
as in (4.26) we define

c2 := p(|+&; x)= inf
z # F

p(|+&; z). (4.83)
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A comparison of the two potentials p(|+&; } ) and p(|; } ), and using
(4.49), shows that

&c2�(1+&&&) c0 . (4.84)

As in the analysis done in (4.27) through (4.30), we deduce from the asser-
tions (i) and (ii) of Lemma 3.2 that there exist =3>0 and an open set V3

with

F1�V3 , V3 & L(x, $0)=<, (4.85)

and

p(|+&; z)�c2+=3 for all z # (F _ V3)"L(x, $0). (4.86)

From (4.55), (4.60), (4.74), (4.78), and (4.82) we know that

1
m+n

&QnPn
*� |+& as n � �, n # N, (4.87)

and with (4.86) and the principle of descent (Lemma 2.1), as in (4.30), this
implies that

lim sup
n � �, n # N

1
m+n

log |(QnPn)(z)|�&p(|+&; z)�&c2&=3 (4.88)

for all z # (F _ V3)"L(x, $0), and the inequality between the limsup and the
last term in (4.88) holds uniformly for z # (F _ V3)"L(x, $0). With the same
techniques as those applied in (4.31) through (4.43) of the proof of
Theorem 1.8 (first part), we then deduce from (4.83), (4.88), and the asser-
tions proved in Lemma 3.2 that

lim
n � �, n # N

1
m+n

log } �C
(Pn Qn f )(`)`m+n d` }=&c2 . (4.89)

As in the proof of Theorem 1.8 (first part), the division of the integration
path into C0"L(x, $0) and C0 & L(x, $0) is the basis for proving (4.89)
here.

Because of (4.84) the limit (4.89) contradicts (4.81), which proves that
the functions (1�(m+n)) log |Hn(z)| converge in capacity to the constant c0

in the domain D. With this result we are close to the completion of our
proof of (1.10).

Let V�D"[�] be an arbitrary compact set and =~ >0 a number with
=~ <G(z) for all z # V. A little differently from (4.60), we now define

E� n :=[z # V | |( f&[m�n])(z)|<(G(z)&=~ )m+n ]. (4.90)
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There exists =>0 such that

log } 1&
=~

G(z) }�&= for all z # V (4.91)

(compare with (4.61)). From error formula (4.46) and the definition of the
functions fn in (4.64) it follows that

1
m+n

log
|( f &[m�n])(z)|

G(z)m+n

=&
2

m+n
log |Qn (z)|&log G(z)+

m&n
m+n

log |z|+
1

m+n
log &|Hn(z)|

=fn (z)+
m&n
m+n

log |z|+\ 1
m+n

log |Hn (z)|&c0+ . (4.92)

Since we know that all three terms on the right-hand side of (4.92) con-
verge to 0 in capacity in the domain D, we know from Lemma 2.16 that
also the left-hand side of (4.90) converges to 0 in capacity in D. Hence, the
sets

En :={z # V } 1
m+n

log
|( f &[m�n])(z)

G(z)m+n <&== , n # N, (4.93)

satisfy

cap(En) � 0 as n � �, n # N. (4.94)

From (4.91) and the two definitions (4.90) and (4.93), it follows that
E� n�En for all n # N and therefore cap(E� n) � 0 as n � �, n # N, which
proves limit (1.10) not only for the subsequence N, but also for the orginal
sequence. K

Proofs of Theorems 1.1, 1.2, and 1.4. These three theorems are so
closely connected that it is best to prove them together. Basically, the
theorems are corollaries of the Nuttall�Pommerenke Theorem if the func-
tion f is single-valued in C� "E, and of Theorem 1.7 otherwise. In the latter
case, knowledge about extremal domains, which has been summarized in
the Theorems 1.3, 1.5, and 1.6, has to be used.

Let the function f satisfy Assumption 1.1, let E�C� denote the set of
singularities of f, and let us assume, as in the proofs of Theorem 1.8 (first
part) and Theorem 1.7, for the sake of simplicity that in the sequence
[(mj , nj)]j # N of indices each nj appears at most once. Thus, we can write,
as before, n instead of nj and m=m(n) instead of mj , n # N�N. It is
assumed that [(m, n)] satisfies (1.6), which is equivalent to the limit (4.12).
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If the function f is single-valued in the domain C� "E, then it satisfies the
assumptions of the Nuttall�Pommerenke Theorem. Condition (1.6) implies
the assumption (1.5). Hence, we know that the sequence [m�n], n # N, con-
verges to f in capacity in C� as n � �, n # N. Of course, an essentially larger
convergence domain is not possible, and Theorem 1.1 is proved.

From the convention made before (1.8), it follows that gD(z, �)=� for
all z # D :=C� , and consequently G(z)=GD(z)=0 for all z # C� . Hence, in
the case of f being single-valued in D"E, limit (1.9) follows from limit (1.4)
in the Nuttall�Pommerenke Theorem. The limit (1.10) does not need to be
proved since G#0. From Theorem 1.3 it immediately follows that in the
special case under consideration the domain of the single-valued analytic
continuation of f is D=C� "E. Therefore Theorem 1.4 is also verified in the
special case.

It may be of interest to add that the proof of the Nuttall�Pommerenke
Theorem is much simpler than the proofs of Theorems 1.7 and 1.8, which
have to be used in the case of a function f with branch points. For the
Nuttall�Pommerenke Theorem it is enough to prove a good estimate of the
function Hn defined in (4.46), which can be done by an appropriately
chosen integration path and a correspondingly chosen polynomial P in
(4.48). Especially, no knowledge about the asymptotic distribution of the
zeros of the denominator polynomials Qn is necessary, which is the key to
the proof of Theorem 1.7.

Next we assume that f is not single-valued in C� "E. Let D be the extremal
domain of the single-valued analytic continuation of f, the unique existence
of which follows from Theorem 1.3. Let F denote the complement of C� "D.
From Theorem 1.5 we know that there exists a compact set F0 with
cap(F0)=0 and that F"F0 is the union of disjoint, open, analytic Jordan
arcs Jj , j # I, i.e.,

F "F0= .
j # I

Jj . (4.95)

Since f is multi-valued in C� "E, and since from Theorem 1.5 we know that
cap(F0"E)=0, it follows that F"F0=% < or equivalently that I=% <. With
Theorem 1.6 we then deduce that D is a symmetric domain in the sense of
Definition 1.3. The function f is locally analytic in C� "E, and consequently
f has analytic continuations from both sides of Jj , and each jump function
gj , j # I, introduced in (1.26), is analytic on Jj . Further we deduce that each
gj#% 0, j # I. Indeed, if for some j # I we would have gj#0, then Jj could be
removed from F, and f would nevertheless be single-valued in the new
domain D� , but this contradicts the minimality of cap(�D)=cap(F ) in
assertion (ii) of Theorem 1.3. Since all jump functions gj , j # I, are analytic
and not identical to zero on Jj , it follows that all assumptions of Theorem
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1.7 are satisfied, and we therefore know that the sequence of Pade�
approximants [m�n], n # N, converges to f in capacity in the extremal
domain D. Further, it follows that the two limits (1.9) and (1.10) hold true
with a function G=GD defined in the extremal domain D. To complete the
proof of Theorems 1.1, 1.2, and 1.4 it only remains to show that there does
not exist a domain D� essentially larger than D, in which the sequence
[[m�n]] converges in capacity to the analytic continuation of f.

Let D� be a domain with D�D� and cap(D� "D)>0. Since cap(F0)=0, it
follows from (1.13) in Theorem 1.5 that there exists an open subarc
J� �F"F0 with J� �D� . Let us assume that J� �Jj with j # I. Since the jump
function gj#% 0, it follows that the analytic continuation of f into D� is multi-
valued in a neighborhood of J� . In [11] it has been shown that if a
sequence converges in capacity in an subdomain of C, then one can select
an infinite subsequence that converges quasi everywhere in the same
domain. Since J� �D� , the analytic continuation of f is multi-valued in a
neighborhood of J� and therefore convergence in capacity of the sequence
[[m�n]] is not possible in a full neighborhood of J� , and hence also not in
the domain D� . This completes the proof of Theorems 1.1, 1.2, and 1.4. K

Proof of Theorem 1.8 (Second Part). In the first part it has been proved
that the first limit in (1.28) holds true under the assumptions of Theorem
1.7. It has been shown above in the second part of the proof of Theorems
1.1, 1.2, and 1.4 that if the function f satisfies Assumption 1.1 and if it is
multi-valued in C� "E, then the extremal domain D=Df for single-valued
analytic continuation of f, defined after Theorem 1.3, is a symmetric
domain in the sense of Definition 1.3. From Theorem 1.4 we know that it
is also the convergence domain of Theorem 1.1. Further it has been shown
that in this case the assumptions of Theorem 1.7 are all fullfilled. Hence, it
follows from the first part of the present proof that the first limit in (1.28)
holds true under both types of assumptions, those of Theorem 1.7 and
those of Theorem 1.1 if the function f is not single-valued in C� "E. Thus,
only the second limit in (1.28) remains to be proved, which we shall do
now. It will be deduced from the first limit in (1.28).

Let us again assume without loss of generality that in the sequence
[(mj , nj)]j # N each nj appears at most once. For the sake of simplicity we
then can write n instead of nj and m=m(n) instead of mj , n # N�N. As in
Theorem 1.8 it is assumed that the sequence [(m, n)]n # N satisfies limit
(1.6) or equivalently limit (4.12).

Let Qn and Pn denote the coprime denominator and numerator polyno-
mials of the Pade� approximant [m�n], i.e.

[m�n](z)=
Pn(z)
Qn(z)

=
pmn(1�z)
qmn(1�z)

, Qn # Pn*, (4.96)
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with pmn and qmn defined in (1.3). The polynomial Qn has been introduced
in (4.1). We have

?mn=&Qn
, `mn=&Pn

. (4.97)

The first identity has already been used in (4.13). From the first limit in
(1.29) we know that

1
n

&Qn
*� | as n � �, n # N, (4.98)

where |=|F is the equilibrium distribution on the set F=C� "D. By choos-
ing an infinite subsequence, if necessary, and which we continue to denote
by N, we can assume that the limit

1
n

&Pn
*� & as n � �, n # N, (4.99)

exists. Because of limit (4.12) the measure & is positive and |&|<1. The
proof of Theorem 1.8 is complete when we have shown that &=|.

In Theorems 1.1 and 1.7 we have proved that the sequence of Pade�
approximants [m�n], n # N, converges to f in capacity in the domain D. In
[11] it has been shown that convergence in capacity implies convergence
quasi everywhere for an infinite subsequence. Thus, we can select such a
sequence, which we continue to denote by N, such that [m�n](z) � f (z) for
quasi every z # D. From (4.96) it then follows that

lim
n � �, n # N

1
n

log } Pn (z)
Qn (z) }= lim

n � �, n # N _cn+ p \1
n

&Qn
&

1
n

&Pn
; z+&=0 (4.100)

for quasi every z # D. The constants cn # R in (4.100) are defined by

1
n

log |Pn (z)|=cn& p \1
n

&Pn
; z+ . (4.101)

Since the logarithmic potentials are normalized by (2.1) and (2.3) in such
a way that they always are finite quasi everywhere in C, it follows from the
limits (4.98), (4.99), (4.100), and the Lower Envelope Theorem (Lemma
2.2) that the limit

lim
n � �, n # N

cn==: c0 (4.102)
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exists and that

p(|&&; z)=&c0 (4.103)

holds for quasi every z # D. Since supp(|)�F, the potential p(|&&; } ) is
subharmonic in D. This implies that (4.103) has to hold for all z # D. The
potential p(|&&; } ) is continued in the fine topology. The ordinary bound-
ary of a domain is also the fine boundary of this domain. From Theorem
1.5 or from Definition 1.3 we know that D� =C� . Hence, it follows from the
fine continuity of p(|&&; } ) that (4.103) holds for all z # C� , which implies

&=| and c0=0, (4.104)

and the proof is completed.

Proof of Theorem 1.9. It has been shown in the Proof of Theorems 1.1,
1.2, and 1.4 that it makes no difference whether one starts from the
assumptions of Theorem 1.7 or Theorem 1.1 if in the latter case the func-
tion f has branch points. Therefore, we can use all results from the proofs
of both theorems. Especially, the error formula (4.46) and elements of the
proof after (4.68) shall be used, where it has been proved that the sequence
((1�(m+n)) log |Hn(z)| converges in capacity to the constant c0 in the
domain D. As before we will write n instead of nj and m=m(n) instead of
mj , n # N�N. Let on denote the order of the zero of the error function
en(z) := f (z)&[m�n](z) at the point z=�. After (4.68) it has been shown
that the measures &n introduced in (4.68) converge to zero for any sub-
domain D1 . This implies with the error formula (4.46) that

lim
n � �, n # N

1
n

|on&2 deg(Qn)|=0. (4.105)

With (4.12) and the first limit in (1.29) of Theorem 1.8, it then follows that

lim
n � �, n # N

1
n

|m+n&on|=0, (4.106)

which proves limit (1.30).

Since

deg([m�n])=max(deg(Qn), deg(Pn)), (4.107)

limit (1.31) follows from both limits in (1.29) of Theorem 1.8. K
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